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Abstract 
In this deliverable we provide the research performed towards compression mechanisms 
researched in the context of the vIrtical project, in particular, in Task 4.1. The goal is to design 
compression strategies at the NoC level, allowing messages to be sent in a compressed 
manner, thus saving communication costs, mainly by reducing the number of transmitted flits 
and consequently the energy consumed. The provided mechanism relies on the abundance of 
memory data blocks filled with zeros, thus easily compressible by using a zero-detection 
strategy. These findings were obtained from D1.1.  

In this deliverable we provide a hardware implementation for both compression and 
decompression at a generic network interface (NI). The mechanisms have been designed in 
isolated mode in order to be easily adapted to customized NIs used in the project.  

Results show the effectiveness of the compression and decompression mechanisms and the 
low overhead they introduce. The percentage of traffic reduced by the compression strategy 
justifies the added resources for compression and decompression. The area overhead for the 
compression and decompression mechanisms required for a system with coherence support is 
17.94% and 0% respectively whereas the added power consumption is 75.74% and 4%. 
However, traffic between memory and the L2 cache for the applications analyzed is reduced by 
a factor of 3, which justifies the overhead. 
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Glossary 
 

ACRP: Aligned Consecutively Repeated Pattern 

ADDR: Address 

AMBA: Advanced Microcontroller Bus Architecture 

AXI: Advanced eXtensible Interface 

DST: Destination 

FIFO: First In First Out 

Flit: Flow control digit 

FT: Flit Type 

GPPA: General Purpose Processor Accelerator 

ID: Identifier 

MC: Memory Controller 

nACRP: Non-Aligned Consecutively Repeated Pattern 

nAnCRP: Non-Aligned Non-Consecutively Repeated Pattern 

NI: Network Interface 

NoC: Network-on-Chip 

NZ: Non-zero 

OCP: Open Core Protocol 

SRC: Source 
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1. Introduction 
This deliverable provides implementation solutions to compression strategies at NoC level. 
Traffic compression is an important aspect of a NoC setting as potentially we can save energy 
very easily. Data streams sent through the NoC can be compressed at injection and 
decompressed at ejection, thus travelling through the NoC in a compressed mode, saving 
power and even latency (messages will be shorter). 

This work has been done taking a basic network interface (NI) as a baseline, thus not adopting 
any current NI technology. The aim for this choice is to show the overheads of the compression 
strategies in an isolated mode and, most important, being implemented as a single component 
that is ready to be incorporated to existing NI solutions. Indeed, the solutions take into account 
only the existence of a decoupling buffer at the NI for the injection of messages, and a reception 
buffer at the NI for the ejection of messages from the NoC. Communication between the core 
and the NI is not affected by our solutions and is completely orthogonal to the solutions we 
provide. 

Indeed, there is not much related work about NIs and the way compression strategies can be 
plugged in to NoC systems. We provide a section in this deliverable about related work. In the 
next Sections, besides the related work section, we provide implementation aspects and 
evaluation analysis.  

We have chosen to build a solution where the NI has a message-size interface with the end-
node. In other words the end node transfers a whole message to the NI. We refer to this 
solution as parallel compression. The NI needs to allocate a message-size buffer, with the 
corresponding buffering overhead. The benefit in this case comes with the fact that the NI has 
complete access to the message and has more opportunities for an effective compression. At 
ejection, however, the NI needs to reconstruct the message and thus, an extra latency is 
incurred before delivering the complete message to the end node. Because compression is 
targeted to large memory blocks, we opted for a parallel compression strategy. 

This deliverable is closely linked to Deliverable 1.1, where compression opportunities were 
identified. Therefore, this current deliverable builds on top of the results of D1.1. However, the 
compression strategies analyzed in this deliverable have been designed with some 
assumptions of the target system. We assume the use of a coherence protocol running on top 
of the NoC, thus most of the traffic will be made of messages generated by the coherence 
protocol, including coherence commands embedded in short messages and memory blocks 
embedded in large messages. We will focus on compression opportunities of memory blocks, 
thus focusing on large messages injected into the network. Memory blocks are seized to 64-
byte blocks (512-bit wide). Also, we assume the possibility of building a NoC with different 
virtual channels by physically replicating one VC-less network. 

The compression solution provided in this deliverable, assumes certain packet formats in the 
network. In particular, the baseline flit format will be specified and customized to the 
compression solution provided. This is of need since the compressed messages need to be 
uncompressed at the destination; thus, compression information needs to be injected together 
with the messages. Also information for the coherence protocol must be included (source node 
address and memory address). Our flit size is set to 32 bits. 
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2. Related Work 
When considering related work, we must distinguish two different subjects, Network Interfaces 
(NIs) as a whole and proposals of compression strategies for NoCs. Since designing a NI is not 
within the scope of this project, we have focused on NoC compression strategies. 

Compression of the transmitted information does not seem to be a largely explored field. There 
are many papers on test data compression for NoCs, but on these papers the data is 
compressed offline, out of the network, and only decompression is applied in the NIs. Some 
examples can be found at [1] [2] [3] [4] [5] [6] . Since compression is not performed in the NoC, 
the strategies explained in these papers are not applicable to our needs. Other papers [7] also 
deal with compression of the routing table, which again is not what we were looking for. 

Some papers however study NoC compression strategies, which may be applicable to our 
project. Some examples of these are [8] [9] [10] [11] [12] [13]   

In [8] (2006), a real-time compression technique that reduces the amount of bits sent is 
presented. The USBR technique removes the bits which do not change, and sends some extra 
information (which bits change and how long the block of data is). This technique aimed at data 
streams where the most significant bits are less likely to change than least significant bits. In a 
memory coherence protocol this is not the case, so it is not applicable to the type of data 
involved in our project. 

The authors in [9] (2007), integrate compression and decompression with a coherence protocol. 
Basically, a protocol processing core is included in multi-core nodes to perform both the 
coherence protocol, compression and decompression. This is an interesting approach but we 
prefer to add a small module with simple logic to the necessary NIs, rather than including an 
extra core. It is our intention to modify the existing components the least possible and keep our 
design as independent as it can be from other components or protocols. 

In [10] (2008) two compression strategies are presented. The first one, named Cache 
Compression is performed between the L1 and L2 (inside the cache) and is meant for storage 
(squeezing more data in the same sized cache structure). The second one is called 
Compression in the NIs and it consists in compressing the information right before injecting it, 
so it is aimed for transmission. It is this second strategy that is more interesting for our purpose: 
a simple compressor/decompressor can be integrated in the NIs. The pitfall of this strategy is 
that it needs to integrate such modules in every NI, when it is not necessary for us, and that it 
uses a table-based frequent-pattern compression.  

Adaptive data compression for on chip network performance optimization is presented in [11] . It 
uses a table-based strategy, improving it by using shared tables and pipelining compression 
and injection of the flits. It is interesting, but the nature of the data characteristic to our 
applications of interest makes a table redundant (since our compression target are compression 
strings, there is no need to use tables or calculate frequent patterns). 

A similar approach is shown in [12] as well, except that instead of frequent patterns, it is based 
on frequent values. The authors claim that with a small code-book for end to end 
communications, that does not need to be the same among different cores, they reduce power 
consumption in the router up to a 16.7%. This proposal is again not applicable to our needs. 

Finally, in [13]  an interesting proposal is presented: Although it uses tables (in fact it needs not 
only compression tables but also candidate ones, increasing redundancy), it allows to 
completely eliminate some of the transmissions (in the best case), sending only a short 
message and using matching status bits in the directory, which simplifies and fastens miss 
handling. 

Our particular solution is not compliant with any of these found in previous literature. We have 
developed our own new proposal based on the massive appearance of zeros in the applications 
analyzed. If further study should show that this is an anomaly, and other common applications 
lack this characteristic, a strategy such as the one presented in [13] would be a good option. 
However, with our current data, zero elimination is the best option. 
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3. Compression Opportunities 
In this section we highlight the compression opportunities identified in Deliverable 1.1. These 
findings influence on the compression solutions we provide. Detailed information can be found 
in the mentioned deliverable. 

Basically, in D1.1 we evaluated representative workloads for the targetted architecture and 
realized that long strings of only zeros were very common in the traffic between the L2 and the 
memory controller. We distinguished three cases:  

 Aligned Consecutively Repeating Patterns (ACRP). Patterns in this category are 
consecutive and aligned to byte size. One example is “000000010000000100000001…” 
where the pattern “00000001” is repeated three times (consecutive repetitions) and is 
byte aligned. 

 non-Aligned Consecutively Repeating Patterns (nACRP). This category groups 
those patterns that are still consecutive but not necessarily aligned to any data size. 
One example is “1111000000010000000100000001…” where the pattern “00000001” is 
repeated three times (consecutive repetitions) and is not byte aligned.  

 non-Aligned non-Consecutively Repeating Patterns (nAnCRP). This category 
groups those patterns not necessarily aligned to any data size and not consecutive, this 
is: a pattern that is repeated along the trace but we do not consider if it is consecutively 
repeated or not. One example is “111101111001000000111110000011111111…”. 
where the pattern “1111” is repeated 5 times (not necessarily consecutive) and 
alignment is not considered. 

In D1.1 we concluded that block aligned zero-strings, representing a large hit rate for all-zero 
streams, and furthermore easing the implementation at the NoC level of such compression 
mechanisms were the more interesting patterns. Nevertheless, taking into account that our 
transmission unit is one flit (4 bytes) and in this flit a header must be included, we realized that 
the most interesting type of pattern studied in D1.1 is in fact nACRP, since it allows us to totally 
avoid sending some of the flits, thus saving power and time, and does not impose any further 
restriction. In order to be compressed, zero strings must be of at least 25 bits and these 25-bit 
chunks must be aligned with the beginning of the flit, but this alignment is different from that 
studied in D1.1 and needs not be explicitly calculated or studied. 

In Table 1 and Figure 1 we can see that 93.45% of the bits transmitted between L2 and the 
memory controller fall under the nACRP pattern type. Due to the aforementioned restriction, not 
all these bits will be eliminated from our transmission, but the distribution visible in the graph 
shows that more that 80% of the transmitted information can in fact be compressed with high 
resulting benefits. 

(nACRP) SHA1 SHA256 SHA512 AES-128-ECB AES-256-ECB

00000000 93,45 93,26 93,42 92,83 92,74 

Table 1. Comparison of the most interesting patterns (nACRP). 
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Figure 1. nACRP distribution. 

Therefore, as a conclusive deduction, we target non-aligned long zero streams of memory data 
blocks as the main source of compression opportunities. In the following sections we describe 
the solution implemented. However,  we first describe the NI used as baseline. 
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4. Baseline Network Interface (NI) 

Figure 2 shows the schematic of the NI used as baseline. It implements two ports connected to 
the network, one in each direction. Therefore, injection and ejection of messages are supported 
by the NI. The NI has one buffer where messages to be injected are allocated by the injection 
logic. This logic is driven by the node connected to the network (through the NI) and is specific 
of the protocol used (AMBA, AXI, OCP, …). Likewise, the NI has an ejection buffer where 
messages received from the network are temporarily stored and delivered to the node. The 
logic to read from this buffer is also dependant of the protocol.  

 

Figure 2. Baseline network interface (NI). 

The size of both buffers will be customized to different configurations both in number of slots 
and slot width. We will evaluate different configurations ranging from one single slot (minimum 
area constraints) to eight slots (maximum buffer). 

The NI has three extra logic blocks, all of them implemented in our solutions. The header 
builder logic is in charge of preparing the header of the flits of the message to be injected. At 
both sides of injection/reception we also implement a flow control logic. In particular, we 
implement the Stop&Go flow control protocol. 

Finally, as shown in the figure, we add two logic blocks for the compression/decompression 
solution. These blocks are intimately linked to the buffers. We analyze the overhead of such 
solutions in terms of area overheads, operating frequencies, and power consumption. 

The NI evaluated in this work does not support virtual channels. Indeed, injection and ejection 
buffers consist of a single FIFO queue each. Virtual channels are an interesting addition to a 
network on chip, mostly for performance issues (boosting network throughput) but also for 
correctness reasons. For instance, in a request-reply protocol, both types of messages need to 
be decoupled by traveling through different virtual channels. Otherwise, protocol-level 
deadlocks can be induced. This is the case assumed in the GPPA device (more details in 
Deliverable 4.1). To fully support virtual channels and to decouple request messages from reply 
messages, we opt for a replication of the NI. Indeed, only the standard (not implemented) part 
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shown in the above figure will be replicated. The network can also be replicated providing 
separate resources for each traffic class. In addition, the results obtained in this deliverable in 
terms of area must be multiplied by the number of virtual channels needed in order to get an 
approximate estimation. Indeed, most of the area needs of the NI are caused by the buffers, 
which need to be replicated for the support of the request-reply protocol. 

The compression solutions focus on memory blocks. Therefore, short messages triggered by 
the coherence protocol are not targetted. This means that compression logic needs to be used 
only in one particular virtual channel, the one used by long messages carrying memory blocks. 
This motivates also for a design of the NI in isolation of the virtual channel requirements, since 
the final solution will require a NI for the request layer with no compression logic built-in and a 
NI for the reply layer with built-in compression logic. Since we provide results for different 
configurations, it will be easy to obtain the final requirements for a system implementing a 
request-reply protocol with and without the compression mechanism. 

4.1. Baseline Packet Format 
The NI assumes the packet format shown in Figure 3 and Figure 4. The first one corresponds to 
short messages generated by the coherence protocol. The protocol will trigger a request (coded 
in the COMMAND field) to a specific destination end node (coded in the DST field) and with a 
32-bit address (coded in the ADDR field). The format also codes the source end node sending 
the message (coded in the SRC field). Notice that a short message will be compounded in two 
flits injected through the NoC. 

 

Figure 3. Short packet format (baseline configuration). 

Each flit includes two bits to code the flit type. Only two types are possible for short messages: 
Header (11) and Tail (01). Although we could use only one bit to code the type, we prefer to use 
two bits in order to make it compatible with long message formats. 

For long messages more data needs to be injected, thus packet format is made of up to 19 flits. 
The first flit is identical to the short packet format one, including destination, source and part of 
the address. The second flit also includes the remainder bits of the address, and instead of the 
padding, a 5 bit coherence command and 9 bits of the payload (the most significant bits). The 
payload is the memory block that is being transmitted, (512 bits). Flit 1 to Flit 18 transport part of 
the payload (memory block). The final flit includes a pading of 6 bits. In long messages, three flit 
types are used: header (11), tail (01) and payload (10). 
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Figure 4. Long packet format (baseline configuration). 
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5. Parallel Compression Strategy 
In this section we develop the strategy for compressing messages with a parallel approach, 
where the whole message is simultaneously accessed from the NI.  

The memory blocks are the target of the compression solutions. The parallel approach takes the 
memory blocks and divides it in chunks. In our case, chunk size will be set to 25 bits. If all the 
bits of a chunk are set to zero, then the chunk is not transmitted over the network. 

In order to support chunks and align them to flits, we need to redefine the packet format. The 
new packet format for long messages is shown in Figure 5. Short messages are not 
compressed and, therefore, the format shown in Figure 3 is used. 

Long messages carry a memory block, which is the target of our compression strategy. 64-byte 
memory blocks are divided in 20 chunks of 25 bits each and a remainder set of 12 bits (the 
highest order bits of the memory block). 25-bit chunks have been selected as it allows a perfect 
match with the flit and packet width. 

The first flit is not modified as it does not include payload bits. However, the second flit is 
modified to carry the remainder bits of the payload (as the block size is not multiple of chunk 
size). The remainder bits of the payload will not be compressed. 

However, for every 25-bit chunck a flit can potentialy be injected into the network. The flit for a 
chunck includes the flit type field, the chunk id field (from 0 to 19, thus 5 bits) and the payload 
chunk (25 bits). 

 

Figure 5. Long packet format (memory blocks) for parallel compression. 

Figure 6 shows an example where a memory block is processed and 4 flits are injected. Flits #2 
and #3 correspond to two chunks with some of their bits different from zero. 
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Figure 6. Example of parallel compression. 

 

Thus, for a memory block with all its bits set to zero, the strategy will only inject into the network 
flits #0 and #1. This is the maximum compression rate that can be achieved with this strategy. 
Notice that the two flits carry other information fields (address, source, destination), which are 
typically non-zero fields. 

5.1. Implementation 
Figure 7 shows the logic details for the parallel compression strategy. In this approach we make 
the slot width of both injection and ejection buffers equal to the size of the message. Thus, 
whenever a new node requests to inject a new message, the injection logic copies the entire 
message into the injection buffer (if at least one slot is free). 

When a message arrives to the NI (512 bits), the control information for the header (destination 
node, source node, and memory address) is added, thus arriving 558 bits in total. These bits 
are all treated as payload, except that the first 60 bits (the first two flits) are never compressed. 
Those bits correspond to the source, destination, address, and the 12 most significant bits of 
the payload. 

The buffer slot is logically divided in chunks of 25 bits, including the 60 bits aforementioned. 
Chunks #2 to #21 are sent to the OR stage where all-zero chunks will be detected. Then, the 
resulting output of the OR stage will be used to compute the flit type and tail bit as well as the 
selection of the flit to inject into the network. The selection drives the multiplexer shown in the 
figure. Upon an injection of a flit, the associated output of the OR stage is reset in order to allow 
the injection of the next flit for the packet. Let us describe each stage details. 
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Figure 7. Injection NI with compression (general view). 

All the bits of the message are exposed to the OR stage, shown in Figure 8. A 22-bit register 
stores the output of the OR gate for every chunk (notice that the first two chunks are not 
computed with an OR gate and are always set to one. The register (Nz) will keep account of the 
chunks that need to be injected (i.e. are non-zero). This register is written once per message 
injected and this occurs when the message is exposed at the head of the queue (in the first 
slot), thus can be driven by the write signal of the buffer. 

 

Figure 8. OR stage of the compression mechanism. 
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The Nz register output is now fed to the FT/ID selection logic, shown in Figure 9. This logic 
selects the next flit to inject. To do this, a priority encoder is used with all the Nx bits as input. 
The encoder selects the most significant bit set to one. This will be the first flit to inject. The 
Select signal is then used to drive the multiplexer at the injection port.  

Once one flit is selected, the logic must be configured to select the next flit at the next injection 
cycle. To do this, the select signal is used in the OR stage in order to reset the appropriate Nz 
bit. Thus, at the next cycle a different chunk will be selected (if any). 

 

 

Figure 9. FT/ID selection stage of the compression mechanism. 

In addition, the FT/ID selection logic computes the flit type and the flit number for every injected 
flit. The most significant bit of the flit must be set to one for header and payload flits, and set to 
zero only for a tail flit (notice that a flit can not be header and tail at the same time since 
compressed packets consist of two flits minimum). Similarly, the second bit of the FT field (bit 
30) has to be set to 1 for a tail or header flit and to zero only for payload flits. See the table in 
Figure 5. Therefore, the complexity lies only in computing which of the chunks is the last one, 
since it needs to be set as the tail FT. This is achieved by an additional priority encoder but this 
time the Nz bits are inputed in reverse order. Hence the last chunk with the Nz signal set 
(meaning the chunk is non-zero chunk) is identified. With a comparator of the two outputs of the 
priority enconders, upon a match, the last flit being injected is identified as the tail flit.  

The decompression strategy, shown in Figure 10, is much simpler since we do not need to  
calculate anything. When the first flit arrives, (with the FT field set to Head), the 30 remaining 
bits are placed at the beginning of the reception buffer. The second flit is treated the same way. 
If the second flit is not the tail of the message, all subsequent flits are placed according to the flit 
address (bits 29 to 25 of the flit). The Tail flit (FT equals Tail, i.e. 01) activates the end of 
message signal to indicate that the message is complete and the buffer slot is full.  
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Figure 10. NI ejection with compression mechanism. 

Notice that untransmitted chunks need to be coded at destination as zeros. Thus, the receiving 
slot is initialized every time to all zeros. 
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6. Evaluation Results 
In this section we provide the results when analizing both the performance of the compression 
strategies, and the overheads of the implemented solutions. Therefore, we present the results 
into two separate parts. In the first part, we provide compression effectiveness by analyzing the 
percentage of traffic that is really compressed by the solution. In this part we use our simulation 
platform and inject the application memory access traces used in Deliverable 1.1. In the second 
part, we focus our attention on the implementation overheads. We show the typical results of 
area overheads, operating frequencies, and power consumption estimations of the implemented 
modules.  

The combinations of both parts allows to decide the effectiveness of the compression solution. 
After the evaluation we provide a discussion section where we focus on the combination of both 
parts. 

6.1. Compression Rate Achieved 
One important aspect of the compression mechanism is its effectiveness in compressing traffic. 
For this, we have analyzed the compression rate achieved. We use the gMemNoCsim 
simulation platform (previously used in D1.1). With this simulator we model the scenario shown 
in Figure 11 (similar to the one used in D1.1). Four cores are attached to the same router. The 
cores are modeled by the private L1 cache. Also, an L2 cache is implemented and attached to 
the same router. The memory controller (MC) is attached to a neighbor router.  
 
An invalidation directory-based coherence protocol with MOESI is implemented. Flit size is set 
to 32 bits, short messages sized to 64 bits (2 flits) and long messages sized to 512 bits (block 
size). 

 

 
Figure 11. Simulated scenario. 

Figure 12 shows the number of flits injected into the NoC when, both, no compression, and 
parallel compression is enabled. The figure shows the flits corresponding to the traffic between 
the L2 cache and the memory controller (MC). This traffic is the one that carries most of the 
memory blocks back and forth. As can be seen, the parallel compression strategy achieves 
significant traffic reduction in all the application cases analyzed. On average, traffic is reduced 
by a factor of 3.5 (250% reduction). 
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Figure 12. Number of flits injected into the NoC. 

This reduction has a significant impact on the energy consumed by the NoC, since much less 
traffic is injected. In particular, dynamic power will be reduced. However, for the execution time 
of the applications, the impact is neggligible as shown in Figure 13. Execution time is barely 
affected. The reasson for this low impact is that memory blocks accesses between the MC and 
the L2 bank are not in the critical path of the application. The L2 bank needs to send later the 
block to the L1 cache and the processor will be blocked only for the first word to arrive, not the 
whole block.  

 

Figure 13. Execution time of application cases. 
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6.2. Implementation Overheads 
The compression design has been synthesized using the 45nm technology open source 
Nangate [45nm. FreePDK] with Synopsys Design Compiler [15] . In Table 2 we show the area 
overheads of the injection part of the NI. The table shows the area for two models, one with no 
compression logic added (baseline) and one with the compression logic. We show results for 
different number of slots (ranging from one to eight). Notice that width of slot is set to 558 bits (a 
whole large message and its header per slot). 
 

 With no compression With compression Compression 
Overhead (%) Slots Area Normalized 

to 1 slot 
Area Normalized to 

1 slot 
1 6587.09 1 7768.6 1 17.94 
2 12156.7 1.84 13313.9 1.72 9.52 
4 23444.7 3.56 24789.3 3.20 5.74 
8 45839.2  6.96 47911.5 6.16 4.52 

Table 2. Area overheads for the injection part of the NI. Different number of 558-bit slots.  

As we increase the number of slots we achieve larger area overheads. Indeed, the buffer is the 
most demaning area resource. This trend is seen in both injection logic implementations. The 
most interesting result from the table is, however, the compression overhead in terms of area. 
As we can see, the logic for the compression is 18% for one slot. As we increase the buffer, the 
area overhead decreases down to 4.52% for 8 slots. Also notice that when considering the 
whole NI this overhead is even lower, (probably negligible).  

For the ejection part of the NI, see Table 3, we see similar trends. As the number of receiving 
slots increases (each slot is 558 bits wide), the area overhead increases. When looking at the 
compression overheads, it ranges from no overhead for one slot to 14% for the 8 slot solution. 

 With no compression With compression Compression 
Overhead (%) Slots Area Normalized 

to 1 slot 
Area Normalized to 

1 slot 
1 5710.4 1.00 5741.8 1.00 0
2 11168.3 1.96 11788.5 2.05 6
4 22334.2 3.91 25120.6 4.37 12
8 45823.3 8.02 52134.6 9.08 14

Table 3. Area overheads for the ejection part of the NI. Different number of 558-bit slots.  

Now, let us turn our attention to power consumption. Power has been estimated by using 
Cadence Encounter [14]  (both for Place&Route and measurements). Table 4 shows the power 
consumed by the injection part of the NI with no compression capabilities (baseline). It shows 
the internal, switching and leakage power consumption. As the number of slots increases, 
percentages of power consumption keep the same. However, total power consumption 
increases, reaching a factor of 1.39 for an 8-slot solution. 

 Internal Switching Leakage Total 
power 

Normalized

to 1 slot Slots Value % value % value % 

1 2.324 74.87 0.7245 23.34 0.05549 1.788 3.104 1

2 5.736 74.18 1.887 24.4 0.1103 1.426 7.733 2.49

4 11.97 74.16 3.948 24.46 0.2233 1.383 16.14 5.20

8 25.35 73.7 8.605 25.02 0.4388 1.276 34.39 11.08

Table 4. Power consumption for the injection part of the NI (no compression). Different 
number of 558-bitb slots.  
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Table 5 shows the injection part of the NI but when adding the compression engine. The last 
column shows also the compression overhead. As we can see also, power consumption keeps 
similar to the one achieved when no compression is included. Even, power consumption is 
reduced for the 1 and 2 slot solutions. It has to be noted that the power consumption achieved 
by injecting less flits onto the network is not accounted in these tables. 

 Internal Switching Leakage Total 
power 

Norm’d 

to 1 slot  

Compression 
overhead (%) 

Slots Value % value % value % 

1 3.869 70.93 1.508 27.65 0.07769 1.424 5.455 1 75.74

2 9.053 71.76 3.428 27.17 0.1352 1.072 12.62 2.31 63.19

4 18.52 72.01 6.951 27.02 0.2502 0.9725 25.72 4.72 59.36

8 36.78 72.31 13.61 26.76 0.4749 0.9337 50.86 9.32 47.89

Table 5. Power consumption for the injection part of the NI (compression). Different 
number of 558-bit slots.  

Finally, for power consumption, Table 6 and Table 7 show power consumption for the ejection 
part of the NI, when no compression or compression is used, respectively. In this case, due to 
the simpler logic necessary, power overhead is well below 10%. 

 Internal Switching Leakage Total 
power 

Normalized

to 1 slot Slots Value % value % value % 

1 4.77 76.55 1.413 22.67 0.0484 0.7767 6.231 1.00

2 9.974 74.89 3.238 24.31 0.1063 0.7983 13.32 2.14

4 19.03 76.34 5.673 22.76 0.2247 0.9013 24.93 4.00

8 39.69 70.59 16 28.47 0.531 0.9444 56.22 9.02

Table 6. Power consumption for the ejection part of the NI (no compression). 

 Internal Switching Leakage Total 
power 

Norm’d 

to 1 slot  

Compression 
overhead (%) 

Slots Value % value % value % 

1 4.939 76.28 1.488 22.99 0.04768 0.7365 6.475 1.00 4

2 9.546 75.8 2.936 23.31 0.1122 0.8906 12.59 1.94 -6

4 20.01 71.39 7.779 27.75 0.2395 0.8546 28.03 4.33 12

8 39.14 68.58 17.45 30.57 0.4845 0.849 57.07 8.81 1

Table 7. Power consumption for the ejection part of the NI (compression). 

In Table 8 and Table 9 we show the minimum clock period necessary for each implementation 
to work properly. These results were obtained by using PrimeTime [16] . Here we can see there 
is a significant impact on operating frequency. It is advisable to pipeline the solution with two 
stages, thus obtaining an adequate injection rate of 1 flit every 0.63ns. 

 Without 
compression 

With compression 
Compression overhead (%) 

Slots Minimum Period Minimum Period 
1 0.63 1.44 128.57 
2 0.66 1.74 163.64 
4 0.77 2.04 164.94 
8 0.92 2.46 167.39 

Table 8. Timing overhead for the injection part of the NI. Different number of 558-bit slots. 
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 Without 
compression 

With compression 
Compression overhead (%) 

Slots Minimum Period Minimum Period 
1 0.50 0.55 128.57 
2 0.65 0.67 163.64 
4 0.68 0.78 164.94 
8 0.77 0.83 167.39 

Table 9. Timing overhead fot he ejection part of the NI. Different number of 558-bit slots. 

6.3. Discussion 
The previous results show the area, power, and latency overheads of different parts of the NIs, 
also for different configurations of number of slots. Now, we need to compound those results for 
a possible NI being used by the coherence protocol. This means, the NI will be made of 
different components, servicing different message clases of the coherence protocol. In detail, 
the protocol triggers short and long messages and only long messages, carrying memory blocks 
are subject to be compressed. This means, the NI needs to be built with different injector and 
with different ejector configurations. 

Table 10 shows the area overheads and power consumption of the NI with no compression 
mechanism included but for slot sizes of 32 bits. The table shows the results for both 
components, injection and ejection. These components will be used to handle short control 
messages of the protocol. 

Slots Area Normalized 
to 1 slot 

Internal Switching Leakage Total 
power 

Normalized 
to 1 slot 

1 314.32 1 0.249 80.79% 0.057 18.42% 0.002  0.79% 0.309 1
2 655.20 2.08 0.628 76.1% 0.192  23.19% 0.006 0.72% 0.826 2.67
4 1321.25 4.20 1.366 76.27% 0.412 23.02% 0.013 0.71% 1.791 5.80
8 2643.48 8.41 2.778 77.4% 0.785 21.87% 0.026 0.72% 3.589 11.61

Table 10. Area and power overheads for both injection and ejection parts of the NI. 
Different number of 32-bit slots. 

With all these results, now we can build the overheads of a final NI with the following 
characteristics: 

 Injection of long messages with compression facility enabled 

 Ejection of long messages with compression facility enabled 

 Injection of short messages with no compression facility  

 Ejection of short messages with no compression facility 

For the number of slots at each component we need to consider the flit size. Indeed, wide slots 
will need different network cycles to inject the whole message, while thin slots will need fewer 
cycles. Therefore, is reasonable to use few slots for long messages while more slots for short 
messages. We select one slot for large messages and two slots for short messages. 

With all these considerations, we derive our final results by adding the different overheads 
previously presented. The final NI will consist of two injection buffers, one for long compressible 
messages and one for short non-compressible ones; and the two corresponding ejection 
buffers. Table 11 shows the results achieved for each of these buffers as well as the global 
results.  

NI component Characteristics Area Overhead (%) Power Overhead 
(%) 

Injection long 
messages 

1 slot; with 
compression 

7768.6 17.94 5.455 75.74
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Ejection long 
messages 

1 slot; with 
decompression 

5741.8 0 6.475 3.91

Injection short 
messages 

2 slots; no 
compression 

655.20 0 0.826 0

Ejection short 
messages 

2 slots; no 
decompression 

655.20 0 0.826 0

Total  14820,8 8.91% 13.582 24%

Table 11. Final area and power consumption overhead for a NI with two injectors and two 
ejectors (one for long messages with compression capabilities and one for short 

messages with no compression capabilities). 

As we can see, the overhead is significant but the potential reduction of the number of flits 
injected in the network (Figure 12. Number of flits injected into the NoC.) suggests that the 
global power consumption will be as well reduced. To corroborate this, we have derived the 
approximate power consumption of the network per flit for both the presented baseline NI 
implementation and our compression-enhanced implementation. In the graph in Figure 14 we 
can see the difference in power consumption for different injection rates. In every graph, the X-
axis corresponds to the compression rate [0:1] and the Y-axis corresponds to the difference in 
power consumption between our solution and the baseline (we have taken as a baseline a NI 
with one injector and one ejector of 2 32-bit slots each). We have only taken into account the 
long message network, since the other network is exactly the same in both cases and would be 
nullified. 

 

Figure 14. Study of the difference in power consumption of our solution and the baseline 
depending on compression-rate for different injection rates. 

In the previous graph we can see that depending on long message injection rate, we can save 
different amounts of power, but in any case the compression rate needed is 0.3 (we need to 
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send at least 30% less flits in order to get some power benefit). Since our compression rate is 
much beyond the needed 30%, it is assured that with data that follows the pattern of the 
applications studied in D1.1 some power would be saved.   

Since the power consumed by the NI with compression facilities is higher than that consumed 
by the baseline NI, it seems interesting to provide some heuristic in order to turn the mechanism 
on and off, depending on its relevance. Since messages between L2 and MC are only a small 
fraction of the total messages on the net, and in every case a previous control message (from 
the coherency protocol) must have been sent, we can turn on and off the mechanism according 
to these short control messages (that travel across the other subnetwork). This possibility needs 
to be further studied, but it would be bounded between a maximum and a minimum value. The 
maximum value would be the already presented in Figure 14. The minimum value is presented 
in Figure 15. Study of the difference in power consumption of our solution and the baseline 
depending on compression-rate for different injection rates with no static power., where we 
show the result with only  de dynamic power component. 

 

Figure 15. Study of the difference in power consumption of our solution and the baseline 
depending on compression-rate for different injection rates with no static power. 

As we can see from the graphs, the difference is not very high because the static power 
consumed by the subnetwork is negligible, (it is mostly represented by the leakage power of its 
components). 
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7. Conclusions 

 

In this deliverable we have provided the results for Task 4.1 in the context of the vIrtical project. 
Our goal was to design and analyze compression strategies at the NoC level, saving 
communication costs, by reducing the number of transmitted flits. The provided mechanism 
relies on the abundance of memory data blocks filled with zeros (as seen in D.1.1), thus easily 
compressible by using a detection strategy  

Our compression mechanism avoids sending flits without information (i.e. not sending flits that 
only consist of zeros). This technique is both easily applied and highly efficient. This 
compression scheme is only applied to long messages (a full memory block, 512bits), not to 
short messages (of only 2 flits).  

The results displayed in the previous section show the effectiveness of the compression and 
decompression mechanisms and the low overhead they introduce. The percentage of traffic 
reduced by the compression strategy (a factor of 3.5) justifies the overheads in resources for 
compression and decompression. The area overhead for the compression and decompression 
mechanisms required for a system with coherence support is 8.91% whereas the added power 
consumption is 24%. 
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