
 1

Grant Agreement number: 288574

Project acronym: vIrtical

Project title: SW/HW extensions for virtualized heterogeneous multicore
platforms

Seventh Framework Programme

Funding Scheme: Collaborative project

FP7 -ICT -2011-7

Objective ICT-2011.3.4 Computing Systems

Start date of project: 15/07/2011 Duration: 36 months

D 4.1 Hardware hooks for the programmable features of the system

 Due date of deliverable: Month 18

Actual submission date: Month 20

Organization name of lead beneficiary and contributors for this deliverable: UPV, UNIBO, TEI
Work package contributing to the Deliverable: WP4

 Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission

Services)

RE Restricted to a group specified by the consortium (including the
Commission Services)

CO Confidential, only for members of the consortium (including the
Commission Services)

APPROVED BY:

Partners Date

All partners March 6th, 2013

 2

Table of Contents

Abstract ...3	

Glossary ..4	

1.	
 Introduction ..5	

2.	
 Hardware hooks for monitoring at system-level ...7	

2.1.	
 Monitoring Primitives in Hardware ..7	

2.2.	
 NoC Monitoring ...9	

2.3.	
 Monitoring RTL Implementation Results ...10	

2.4.	
 Monitoring RTL implementation validation at system-level ...11	

3.	
 Partitioning Support ...13	

3.1.	
 Preliminaries ...13	

3.2.	
 Basic Partitioning Support with LBDR...14	

3.3.	
 Mapping Strategy without Changing the Routing Algorithm ...15	

3.4.	
 Mapping Strategy with Changing Routing Algorithm ..17	

3.5.	
 Support for Global Network Traffic..18	

3.6.	
 Possible Extension to Multiple Routing Algorithms...18	

4.	
 Dynamic Reconfiguration ...20	

4.1.	
 Previous Work on Reconfiguration ...21	

4.2.	
 Native OSR technique ..22	

4.3.	
 OSR-Lite ...23	

4.4.	
 OSR-Lite implementation ..24	

4.5.	
 System-Level Evaluation ..27	

4.6.	
 Synthesis results ...30	

5.	
 Quality of service..32	

5.1.	
 Packet-level soft-QoS through priority-class round robin..32	

5.1.1.	
 Validation of the arbitration policy ..34	

5.1.2.	
 Implementation overhead ..36	

5.2.	
 Flow-level soft-QoS through message-class VC allocation ..37	

5.2.1.	
 Multiswitch virtual channel implementation ..38	

5.2.2.	
 Specialization for GPPA...40	

5.2.1.	
 Implementation overhead ..41	

5.3.	
 Full bandwidth reservation ..41	

5.3.1.	
 Functional validation ..42	

5.4.	
 QoS-aware Runtime Reconfiguration ...45	

5.4.1.	
 Functional validation ..47	

5.4.2.	
 Dual-network design for high-performance reconfiguration ...48	

6.	
 Conclusions..50	

References ..51	

 3

Abstract
This deliverable describes the key hardware extensions for embedded system virtualization. Such
extensions are runtime programmable, thus augmenting the hardware platform with the needed flexibility
and dynamism that a virtualized environment requires. The hardware extensions include a monitoring
facility and a reconfiguration facility, which will be thoroughly illustrated throughout this deliverable. One
one hand, hardware primitives will form the monitoring facilities towards dynamic observation and
management of a heterogeneous SOC target architecture. In WP3, they will assist the system software
(OS and hypervisor) in the configuration of the embedded hardware in the best appropriate way to
maximize performance of applications and user experience. On the other hand, this deliverable details
the hardware support for the effective virtualization of the GPPA. To achieve such property, we report on
the partitioning support at network-on-chip level, while at the same time achieving partition isolation, on a
runtime reconfiguration strategy that yields flexible partitioning while avoiding deadlock, and the on a
soft-QoS package at packet and flow level. Above all, the smooth integration between the partitioning,
reconfiguration and QoS features is addressed. Hardware-level partitioning will also provide means to
find a balance between performance, safety, and security for system integrator. While this document
focuses on algorithms which are implemented at the HW level, the configuration and run-time API to the
OS/hypervisor/applications will be defined in WP2 and WP3.

.

 4

Glossary
DMA - Direct Memory Access

DRM - Digital Rights Movement

DVM - Virtual Memory Management

GPPA – General Purpose Programmable Accelerator

KVM - Linux Kernel Virtual Machine

LBDR – Logic-Based Distributed Routing

NoC - Network-on-Chip

SoC - System-on-Chip

VM - Virtual Machine

VMM - Virtual Machine Monitor

VP - Virtual Platform

VC – Virtual Channel

 5

1. Introduction

Within the EU/ICT Collaborative Project vIrtical - workpackage WP4, the current deliverable describes
synergistic hardware extensions involving monitoring components and techniques necessary to support
efficiently not only existing processor virtualization, but also hardware-assisted full virtualization towards a
heterogeneous SoC target architecture.

The proposed heterogeneous multicore system platform follows a trend towards convergence of high-end
embedded systems and general purpose platforms for nomadic computing. Thus, programmable
accelerators coexisting with ARM SMP multicore hosts are able to achieve the required energy efficiency
(MOPS/mm/W) for embedded devices. Hardware-level enhancements advance virtualization technology by
alleviating software overheads, ultimately exploiting the high performance capabilities of the underlying
physical layer. At the same time a heterogenous multicore platform is inherently complex with a multitude of
different subsystems that need careful tuning and runtime management.

In this deliverable we pursue the hardware extensions required to support virtualization in the
architectural template of the project. Four main directions are taken: Monitoring facilities,
partitioning support, runtime non-intrusive reconfiguration, and QoS provisions, in addition to the
co-design and co-optimization of the three latter features, since they actually determine and change
the operating mode of the embedded system device

Monitoring support. Given the additional dynamic information, decisions at system level can become more
intelligent and achieve better performance and adaptivity. We address the use of a distributed infrastructure
to monitor the state and dynamics of the system and provide feedback to the runtime environment (OS and
hypervisor) and possibly to the application.

Based on the additional monitoring information available, decisions at system level can become more
intelligent and achieve better operational characteristics and adaptability. Runtime monitoring support serves
as a basis for the important tasks of providing security, performing debugging and improving performance of
executing programs [7] [8] [9] . In general, monitoring management refers to the ability to track a number of
events so as to offer better insight into the system’s resource usage and into the behavior of applications at
the same time. On top, the monitoring information that can be obtained and refers to the effectiveness of the
different components in the system at a specific time interval can guide dynamic decisions of the operating
system and of the hypervisor. Representative system responses could be frequency throttling, voltage
reduction or resource reconfiguration depending on the exact nature of the deviation from expected system
operation.

In a virtualized environment, multiple OS instances are involved, namely the hypervisor (VMM) and the
guest(s). One of the hypervisor roles involves scheduling processor and system resource access to virtual
machines as they need them. Apparently, with multiple VMs running on a single system, the virtual machines
that aren't actively serviced by the hypervisor actually enter a type of wait state until their next turn. Hence,
effective management of resources can result in optimized utilization and performance.
	

The objective of a monitoring scheme is to view how many resources those virtual machines (VMs) are
consuming inside a virtual host or at the system level. However, besides processor’s utilization in a
heterogeneous multi-core system monitoring is required across all activities being done on the system. The
deliverable details newly proposed subsystem components for monitoring NoC-based heterogeneous
system and in particular the network interface infrastructure and memory controllers.

Partitioning support and reconfiguration. In addition, partitioning support and reconfiguration is reported
in this deliverable. Partitioning support aims at defining sets of resources and isolating them at the NoC-level
from the other partitions. This is a requirement to guarantee no influence between the accelerated sections
of running applications. In this report we show the hardware support that delivers partition definition and
isolation in the GPPA of the target heterogeneous SoC architecture. As a relevant contribution, such support
is developed on top of a logic-based distributed routing mechanism, which better matches technology and
scalability requirements than table-based routing. The devised solution builds up a routing framework that
leaves many degrees of freedom for the end designer concerning the choice of specific routing algorithms,
partition shapes, and number of virtual channels. Of course, such choices are tightly interrelated, therefore
the deliverable will propose a few relevant global architecture solutions that the designer can choose from.
Also, this deliverable reports on a runtime reconfiguration protocol and its optimized implementation for an
on-chip setting. The implemented protocol avoids deadlock during the reconfiguration process of the network
routing function, and also aims at minimum intrusion on running traffic and mapped applications on the
GPPA resources.

 6

QoS. One of the key features for effective virtualization in embedded systems is that of providing APIs to
application developers in both the open and embedded virtualized environment to allow them to negotiate
with the hypervisor in terms of QoS/SLA. While such programming model implications will be investigated in
WP2 (D2.1), this deliverable reports on the suitable hardware extensions in the GPPA to effectively support
the QoS framework. In this deliverable, we aim straigth for a soft-QoS package, complemented by on-
demand circuit switching whenever tighter guarantees are needed.

It should be observed that QoS not only concerns application-perceived performance metrics, but is a good-
to-have feature even for platform management. In fact, vertical hardware/software exchange of monitoring
information and/or configuration commands requires a suitable service level discriminating this kind of
control traffic with respect to typical data and instruction traffic. As a main innovation with respect to state-of-
the-art QoS NoC frameworks, vIrtical fosters two main approaches:

1- QoS for NoCs is impractically implemented in hardware only, due to the large and hard-to determine
number of possible use cases at run-time. A proper mix of hardware facilities and software controlled
management policies is vital to achieving efficient results. In this direction, vIrtical is able to deliver
circuit switching in specific network segments without incurring the burden of setting up or tearing
down circuits.

2- In this project we are going to offer runtime QoS differentiated services by leveraging runtime
reconfiguration of the NoC backbone. It is worth observing that virtualization and QoS are two tightly
interrelated requirements for embedded systems. In this direction, the extension framework of NoCs
for QoS will be synergic with the routing mechanism extensions for network partitioning and isolation
illustrated above.

Overall, while this document focuses on algorithms and primitives which are implemented at the HW level,
the configuration and run-time API to the OS/hypervisor/applications will be defined in WP2 and WP3
(deliverables D2.1 and D3.1).

 7

2. Hardware hooks for monitoring at system-level
In the scope of enhancing monitoring at system-level in VIRTICAL, a monitoring infrastructure is developed
to provide efficient hardware primitives operating in a distributed fashion while facilitating dynamic measuring
of metrics of interest and management of system resources. The monitor agents include counter-based
blocks that capture configured events. Their contents may be set and read by software and used to analyze
and optimize the performance and power consumption of the entire system. System-level metrics such as
read or write data throughput, interconnect read latency can be computed by obtaining all metrics after
selecting the agents of interest in the system.

The design of the monitoring subsystem involves a number of tradeoffs from architectural point of view,
including communication protocols and software interfacing, as well interaction and interoperability; as such,
the design must be performed in concert with the design of main multicore SoC resources. Collected real-
time monitor information can involve substantial amounts of non-critical data (i.e., performance statistics,
throughput, and jitter) that may require separate system resources to transfer and process them. On the
other hand critical monitor information, such as power and temperature or soft-error failures require
instantaneous attention at system level. At the same time system dependability is increasingly important in
the face of numerous environmental and process-related variability that can affect operation and
performance of modern complex SoCs; for instance these cover unexpected voltage drops in the power
supply network, temperature fluctuations, process variations (gate length and doping concentration), and
cross-coupling noise.

2.1. Monitoring Primitives in Hardware
Counter-based monitoring units comprise the primary components for collecting system events and
maintaining statistics for performance optimization. Two main methods are integrated to retrieve monitor
information: i) event-driven sampling that relies on interrupt notification when counter overflow happens, and
ii) time-driven sampling where periodically the monitor manager collects monitor statistics. The following
components are developed to facilitate accounting of various events.

• Event counters: Currently single 32-bit counters are used to accumulate the captured events and are
programmable in order to be controlled by the software running on the manager of monitor
components or on the processors itself. The layout of an event counter is depicted next.

Overflow Flag Counter Value [31:0]
Set when
wrap-around
occurs

Number of events. The trigger condition is set by the
associated control register. Each event can be qualified by a
filter register.

The control register of each event counter contains the following fields:

Software Reset (bit [0]): a write sets the event counter to zero
Counter Enable (bit [1]): when set counting is enabled, otherwise the counter is frozen
Interrupt Enable (bit [2]): when set the counter causes an interrupt when overflow occurs; reading

the value of the counter causes the interrupt to deassert
Counter Trigger (bits [7:4]): allows any of the four triggers to increment the counter when

 asserted
Privilege Level (bit [9:8]): determines the privilege level of the counter manager in order to protect it

from unauthorized access

• Free-running timers: These timers increment at processor or sub-system clock rate. Timestamps can
be enabled tomark the timing of captured events related to a free-running timer that operates as a
wall-clock reference. Additionally, it is useful to obtain events from different clock domains
associated with a local timestamp when insight is needed at a block level. However, currently we opt
for a centralized counter/clock to avoid distributed time consensus issues. A tuple {timestamp, event}
forms an event-time structure.

• Event Filter: A monitor filter commonly is build on the basis of a masking operation that applies on

the captured sample in order to isolate the field of interest. The developed multi-filter unit mainly
consists of three masks which are user programmable. The following figure shows the signal
vectors/inputs Vdata and Vtrigger that comprise the data bus to monitor and the signal to trigger the

 8

sampling of this data bus. The masks can be optionally programmed by the user software and
specify which part of the Vdata and Vtrigger is desired to be qualified.

Figure 1: Structure of a single programmable monitor Event Filter; vector inputs Vdata and Vtrigger
are specified by the designer at configuration time, while Vmask and Vpattern are programmable at
run-time

• Statistic Counter – Moving Average: Consists of a counter with associated logic in order to manage

an input stream of events (x) indexed by time (e.g. xt is the value of x at time t), or counter values,
while a new piece of data is received in a sliding window time interval measured in clock cycles.
Hence, for a sliding window of eight entries the computations needed are an addition and one
subtraction:

 Sumt+1 = Sumt - xt-8+xt
 Avgt = sumt/8

To implement this hardware structure a circular buffer is configured with eight entries (the size is
configurable at design-time).

• Switching Activity Counter: besides the counter this unit includes a circuit to compute the number of

bit transitions in order to provide support for energy monitoring. A coarse-grain activity measurement
can be based on accounting of traffic through counting number of packets. This particular switching
activity circuit offers very fine-grain metrics.

• A system-level block featuring multi-counter-based measurement units is architected in slices,

providing a scalable solution in order to accommodate for capturing an extended number of events.
On the other hand, the reduction of utilized slices can amortize the cost in terms of area and energy
consumption. The developed infrastructure follows a middle ground approach by employing a shared
control and interface glue logic that does not provides the ultimate performance but caters for the
needs of medium multicore SoCs.

The developed monitoring structure is developed to operate in dual mode. The horizontal shadowed
slice depicts the basic unit circuit, which includes a first level filtering, an equality full or partial
comparison stage and final recording in the counter unit; the process is activated by event
generation as indicated by event trigger case A. Alternatively, the left part of the slice can be utilized
as a filter stage to access the counters, while the counters can work independently and log
preconfigured events; the vertical shadowed rectangle indicate the counters activated by event
generation (case B). The partitioning and modularity of this scheme allows for protection against
illegal accesses.

 9

2.2. NoC Monitoring
In the context of integrating monitoring capabilities for the system NoC in VIRTICAL, one of the primary
objectives is to develop advanced monitoring components in close synergy with network interfaces bringing
a dynamic nature to these. Real-time collected statistics can assist, first, in optimizing provided QoS levels in
terms of latency, throughput and jitter. Hypervisor and host’s applications can provide improved resource
management with the aid of run-time metrics such as throughput or packets slack. A packet’s slack is the
number of cycles the packet can be delayed in the network without affecting the application’s execution time
[1] . Second, based on run-time estimated metrics the system can adapt and improve the utilization of
network resources and corresponding energy consumption through employing various reaction policies. By
means of discovering potential congestion, adaptive routing mechanisms, such as those demonstrated in [2]
, can be applied to support QoS traffic. Dynamic allocation of virtual channels and or queuing buffers, DVFS
mechanisms, throttling and policing of packet injection rates are yet different alternatives to control NoC
resources.

The developed monitoring probes provide an easy, fast and efficient infrastructure to jointly monitor NoC-
based system resources and software applications running on top, and a seamless integration of the
hardware monitor agents with the underlying NoC infrastructure in a non-invasive way.

Methodology
Monitoring a NoC infrastructure involves mainly two important aspects. In the viewpoint of supporting high-
performance communication services, and particularly supporting guaranteed quality of service, the
monitoring policies should be tailored to impose negligible interference to the system and its
performance/latency characteristics. The second aspect of monitoring involves the location and amount of
monitor information that needs to be maintained.

Monitoring mechanisms usually are required to provide throughput and latency statistics. In order to identify
end-to-end events, such as request-replies in a NoC and corresponding latency or turnaround time mainly
two techniques can be utilized. Packets are either tagged with timestamps and potentially with additional
information, such as a network interface (NI) identifier and a sequence number, or new separate monitor
packets are generated to provide similar information to the monitor at the destination NI. Both techniques are
intrusive. It is essential that the monitor resources should be kept at a minimum to achieve low overhead.

The developed monitoring solutions are designed to differentiate in order to be employed on the basis of
systems’ constraints and requirements as follows:

• maintain monitor information locally (applied for statistic counters, and only if the sharing degree is
low, i.e. if many processor threads desire to access these counters could cause potential traffic
overloads)

• maintain monitor information in shared memory (appropriate for large amounts of traces through the
monitor probes and if the sharing degree is high)

The developed monitor primitives can be utilized in various contexts at system level as we describe next.

Figure 2: Organization of the multi-counter block Monitor

 10

Monitoring for Throughput accounting
One important metric that evaluates the quality of a network-on-chip is throughput. Bandwidth indicates the
amount of data that can be put on the network in a given amount of time. The monitors that we designed can
be spread over a NoC infrastructure to measure various variables that can be exploited to characterize the
traffic over particular physical or virtual partitions of the NoC.

In particular, the developed counters are designed as performance counters to capture the number of
packets departing a router in a predefined and programmable time interval and additionally can be employed
to measure the buffer occupancy inside each router, so as to determine its level of congestion.

Furthermore, multiple performance counters can be integrated for a single router, or a network interface to
address differentiation of the various traffic flows. Trading area overheads for supported counters per router
challenges the use of block counters (with a lower granularity or sampling rate thereof).

Monitoring for Latency accounting
Latency is a difficult comparison criterion, because it depends on many application-specific factors.
Depending on the application or the criticallity of a guest, minimum latency on a few critical paths can be
more important to measure and ensure via particular policies than statistical latency over the entire traffic
flows. The overall system–level SoC performance usually depends only on a few latency-sensitive data flows
such as processor cache refills, while for most other flows only achievable bandwidth will matter. But even
for the latter dataflows, latency does matter in the sense that high average latencies require intermediate
storage buffers to maintain throughput, potentially leading to area overhead.

Latency can be measured as the round-trip delay of a read or write request performed by a master core. This
can be done in software by the core itself, or by a monitor component in hardware. However, this entails the
maintenance of a possibly large number of entries in a queue since a master can initiate multiple requests.
We opted for distributed monitors that capture the latency of a packet as determined by the clock cycles form
the time that the packet enters a router until the time that its first word departs from the same router. This
difference is marked in the packet itself and is updated at each hop inside the netowrk-on-chip. Thus, when it
finally exits the NoC a local monitor extracts the accumulated latency.

2.3. Monitoring RTL Implementation Results
The developed monitor hardware components are implemented in VHDL at Register Transfer Level and
verified in an FPGA prototype to prove their feasibility and gain insight on the incurred cost.

Table 1 summarizes the implementation cost of indicative monitor configurations using a Virtex-4
VFX20ff672-10 device; the area of a MicroBlaze baseline core without local memory controllers or instruction
and data caches is also depicted for comparison. Unless we integrate complex functions in hardware, such
as compression or classification of events, the cost of integrating even multiple monitors with filtering
capabilities is negligible.

Device	
 Implementation	
 cost	
 of	
 hardware	
 monitor	
 units	
 	

Block	
 Slices	
 RAMBs	
 Frequency	

MicroBlaze	
 core	
 v.7.30	
 1240	
 134	
 125	

Counter	
 with	
 Event	
 Filters	
 332	
 3	
 297	

Switching	
 Activity	
 counter	
 148	
 	
 387	

	

The implementation results of the block counters for a Virtex4 xc4vfx20-11ff672 device are summarized next.

Device	
 Utilization	
 Summary	
 (estimated	
 values)	
 	

Logic	
 Utilization	
 Used	
 Available	
 Utilization	

Number	
 of	
 Slices	
 412	
 8544	
 4%	

Number	
 of	
 Slice	
 Flip	
 Flops	
 612	
 17088	
 3%	

Number	
 of	
 4	
 input	
 LUTs	
 549	
 17088	
 3%	

 11

Number	
 of	
 FIFO16/RAMB16s	
 2	
 68	
 2%	

Performance	
 Summary	
 	

Minimum period:	
 3.232ns	
 Maximum Frequency:	
 309.406MHz	

2.4. Monitoring RTL implementation validation at system-level

The developed hardware components are implemented in VHDL at Register Transfer Level and verified in
an FPGA prototype to prove their feasibility and gain insight on the incurred cost. We have integrated our
monitor models with the Hermes NoC [3] . This allows for direct validation and calibration of our monitor
components. By deploying Hermes NoC, we have designed several different candidate NoC configurations
and compared our monitor simulation estimates for these architectures with the real measurements. We
investigate monitoring for two synthetic applications mapped on a four-by-four creditbased NoC. The packets
consist of sixteen flits and the router buffers are matched to store sixteen flits. As figure 3 shows, four shared
memories are connected at leaf nodes R00-R30, while each application consists of different traffic
generators and occupies four tiles. Each traffic generator generates memory requests following exponential
distributions, which range from 300 to 800 Mbps. Both applications access the shared memories using the
NoC’s XY-routing protocol, thus causing link sharing as well.

Figure 3: Traffic generation applications mapped onto two sets of cores and accessing the shared
memories. The monitors capture latency for the two applications using the centralized monitor unit

The distributed monitors capture latency effects, which is a special field tagged inside each packet. The
monitor is triggered when the latency exceeds fifty clock cycles, and notifies a hardware centralized manager
when a critical threshold of one hundred clock cycles is surpassed. The type of application Ta (or identifier of
VM is used interchangeably), the event type Te and the source node Sij form the tuple request {Ta,Te,Sij}
are sent to the centralized event monitor.

One option is to employ time multiplexing of architectural event sampling to obtain all the values needed for
latency calculation. We used point-to-point links to transfer monitor information to the monitor manager.

In this scenario only latency events are recorded, and additionally the interface of the centralized monitor
combines incoming requests through “OR” operations. Hence, the tuple needs ten bits in total (two for the
application and eight for the cores), while we could also include the monitor identifier in order to identify the
congested memory block instead, or additionally to the source core. Figure 4 depicts the simulation results
captured from the monitors for the generated traffic scenario. The middle graph of each scenario case
depicts the events handled by the centralized monitor component as reported by the real prototype system.
Finally, the bottom graph demonstrates the latency measured at the centralized monitor, including combining
operation, incoming FIFO latency, recording in the internal context addressable memory and service delay.

Overall, the average delay achieved by the hardware monitors is almost fifteen clock cycles, including
capturing, selection and transmission of the identified event. This clearly demonstrates the benefits of using
our architecture in a multi-way high speed classification of monitor events.

 12

Figure 4: Latency captured by monitors for transaction across a 4×4 NoC to shared memories and
monitoring latency for the two applications while using the centralized monitor unit

Through	
 the	
 usage	
 of	
 the	
 monitoring	
 block	
 counters	
 described	
 in	
 this	
 section	
 the	
 latency	
 for	
 each	
 core	
 or	
 task	

can	
 be	
 identified	
 and	
 maintained	
 separately.	
 Then,	
 as	
 proposed	
 by	
 Al	
 Faruque	
 [9]	
 	
 task	
 mapping	
 algorithms	
 can	

be	
 applied	
 to	
 optimize	
 energy-­‐performance	
 metrics,	
 which	
 is	
 nevertheless	
 out	
 of	
 the	
 scope	
 of	
 this	
 report.	

	

	

	

Synthetic traffic scenario #1

Synthetic traffic scenario #2

 13

3. Partitioning Support

3.1. Preliminaries
One key aspect for the virtualization support aimed in vIrtical, is the possibility to provide partitioning support
inside the GPPA. Multiple applications will be running on top of the system and the resources of the GPPA
need to be partitioned in space in order to provide a perfect isolation of the communicating traffic between
different application domains. Figure 5.a shows the case where four applications are using the GPPA
resources without a partitioning support. Nodes with the same collor are assigned to the same application.
As can be observed, the traffic generated by different applications collides in the NoC of the GPPA as the
NoC paths are shared between nodes assigned to different applications.

 (a) mixed application (b) smart allocation (c) low utilization

Figure 5. Application resources in GPPA lead to traffic collisions between applications.

Also, even if nodes are assigned smartly to applications, trying to avoid traffic conflicts, we can either come
up with a conflicting case or with subobtimal assignment and low GPPA resource utilization. This is the case
shown both in Figure 5.b and Figure 5.c, respectively. In both figures, the NoC uses the XY routing algorithm
(messages are enforced to take X direction and then Y direction only) to avoid network deadlocks. In Figure
5.b we can see one partition is assigned 4 nodes wheras the other has the remaining nodes (12). The
second partition will use XY routing and thus will have some communicating nodes with traffic crossing the
other application domain. In Figure 5.c, to prevent the previous case the only mapped application is the first
one, thus loosing GPPA resource utilization and affecting overall system performance.

In vIrtical we apply the LBDR routing concept inside the GPPA, combined with a proper instantiation of the
mechanism to support efficient partitioning of the resources. LBDR has been previously designed in the
framework of the NaNoC project and aims at providing an scalable implementation of most deterministic
routing algorithms for NoCs. It is based on three routing bits and one connectivity bit per output port of each
NoC switch. The routing bits tell the switch whether messages can cross that link and then take the next one
(three possible) at the next switch. Basically, those bits encode the so-called routing restrictions (the
complement of routing restrictions, indeed). With the connectivity bit the logic only knows whether the output
port exists or not. Figure 6 shows the switch IDs and the routing restrictions and the LBDR configuration bits
for the case. In this case, the routing algorithm implemented in LBDR is XY.

As an example of routing bit, the bit Rne defined for switch 5 is set as 0. This means no message can be
forwarded through the north port and at the next switch take the east port. As can be seen, there is a routing
restriction (arrow) defined for that move. Also, the connectivity bits defined for switch 4 are all set to one
except the Cw bit, which obviously is set to zero as there is no west link attached to switch 4. Notice that
LBDR bits are encoded following a routing algorithm, in the previous case the XY routing algorithm. Other
routing algorithms can be used, for instance the Segment-based routing algorithm, which provides much
more flexibility.

The vIrtical project extends the use of the LBDR bits in order to support truly partitioning and maximum
flexibility in partitioning definition. Indeed, in this work, we settle the basis for the definition of partitions and
LBDR bit configurations. Also, the resources required for special partition configurations are shown. As a
principle goal, the partitioning support must be maximized in the sense that all possible (and usable) partition
configurations can in practice be set and used. Next, we detail the partitioning support opportunities with
LBDR and applied to vIrtical.

 14

(a) switch IDs and routing restrictions (arrows) (b) routing and connectivity bits

Figure 6. Routing restrictions, switch IDs, and LBDR bits

3.2. Basic Partitioning Support with LBDR
LBDR natively can provide partitioning support. This can be achieved by proper configuration of the LBDR
connectivity bits. Figure 7 shows the case where the two previous partitions are configured with LBDR bits.
As can be seen in the associated LBDR table, the highlighted connectivity bits of LBDR have been properly
modified in order to avoid messages to escape from their domain. That is, messages are not allowed to
leave their domain as the LBDR routing believes those links between domains do not exist. Indeed, partitions
are configured by logicaly disabling links between partitions. The Cx bits involved are simply set to zero.
Notice that messages can still progress within the domain as there are paths inside the domain. This is the
case for the flow between switches 9 and 6 which can progress through switch 10.

 (a) topology and routing algorithm (SR) (b) LBDR bits

Figure 7. Two partitions defined with LBDR connectivity bits.

Also, is important to notice the simplicity and low overhead of this solution for partitioning support. Indeed,
the LBDR mechanism does not require any single modification. In the past, the LBDR mechanism has been
proved to be its overhead as large as the XY routing mechanism, and even to scale its overhead with switch
radix and not with network size. Moreover, the routing algorithm implemented by LBDR does not need to be
changed, not requiring any extra resource to guarantee deadlock freedom. Indeed, no virtual channel is
needed. LBDR is the routing implementation technique chosen in vIrtical for the GPPA NoC.

One good mapping strategy should maximize the flexibility in defining partitions or domains. Indeed, the
targetted partitioning mechanism in vIrtical must be ready for the allocation of tasks to resources in the
GPPA in a way that GPPA resource utilization is maximiced. Thus, in principle, any domain shape should be
possible to configure and use. The basic mechanism (just adapting connectivity bits), however, does not
work in some scenarios. Take as an example Figure 8.a where the SR routing algorithm is used and coded
in LBDR, and two partitions are mapped. The second partition has been adapted to fit the remaining

 15

resources of the GPPA. However, such partitioning configuration is invalid and has a severe problem. The
path between switches 13 and 10 (or others) can not progress through the partition of Application 1 because
there is a routing restriction at switch 14. The correct path to communicate nodes attached to the switches
affected should bo outside the partition (through switch 9). However, the mapping performed prevents that
path to be taken. Therefore, the match between the routing algorithm (represented by the routing
restrictions) and the mapping configuration is invalid.

 (a) incorrectly mapped (b) correctly mapped

Figure 8. Two applications mapped with LBDR connectivity bits. SR routing.

Notice that the mapping algorithm, then, must conform somehow with the routing algorithm being used.
Indeed, a different location of the routing restrictions would allow the mapping strategy to allocate the
applications as done in Figure 8.a. This is the case shown in Figure 8.b. The routing algorithm is different but
the mapping is the same.

To solve the previous problem we can take two directions. The first one is to simply restrict the mapping
strategy to define only mappings that are in accordance to the underlying routing algorithm. This is the case
shown in Figure 8.b. The other direction is to reconfigure the routing algorithm and adapt it to the desired
mappings. This would mean moving somehow from Figure 8.a to Figure 8.b. The vIrtical project will be
enabled to deal with both solutions. However, they have different impact on performance and mapping
efficiency. In this report we provide a summary of both solutions in the next sections.

3.3. Mapping Strategy without Changing the Routing Algorithm
In this solution, the mapping algorithm (to be implemented in the vIrtical hypervisor) will be aware of the
underlying routing algorithm and will trigger only mapping solutions compatible with the algorithm, thus, not
deriving incompatible mappings with the underlying routing algorithm. The mapping algorithm will be
applicable to any routing algorithm instantiated with LBDR bits. Next we show in pseudocode the algorithm.

Function MappingRequest(num_resources)

ids: array (n x m)
num_free: integer
next_id: integer

if (num_resources>num_free) return -1
if (square_shape_available(num_resources, ids)) return next_id
if(rectangular_shape_available(num_resources,ids))return next_id
if compatibility(num_resources, ids) return next_id
reconfigure_routing()
return MappingRequest(num_resources)

endFunction

The algorithm defines basic shapes of the partitions that can be defined. The basic partitions are: square,
rectangular, p-shape, d-shape, q-shape, and b-shape. Figure 9 shows the 6 allowed shapes. The algorithm
keeps an array of IDs as large as the network inside the GPPA (ids). For each router, the id identifies the
partition the router belongs to. It also keeps the number of free resources (num_free).

 16

 (a) square (b) rectangular (c) p-shape (d) d-shape (e) q-shape (f) b-shape
Figure 9. Partition shapes allowed by the partitioning algorithm.

The algorithm receives a new event, being a new task to be mapped, in which case it also receives the
number of resources to be assigned (num_resources). If the number of free resources is lower than the
number of requested ones, the mapping request is rejected (the algorithm returns -1). Otherwise, the
algorithm maps a suitable mapping on top of the free resources. Priority is given to shapes in the following
order: square, rectangular, x-shape. For square and rectangular the algorithm does not check compatibility
with the routing algorithm. Indeed, those shapes do not need any message to leave the region to keep
connectivity. This is because minimal routing is always enforced by the LBDR version used in this project.
Notice that a different variation would be required in the case of using LBDR with deroutes (which enable
non-minimal paths).

For the x-shape regions, if selected, then the algorithm checks for compatibility. If the compatibility
function succeds (or the shape is square or rectangular), then the resources are assigned to the new domain
(ids are updated) and the function returns the new ID for the domain. If not, the algorithm returns -1 and
the request is rejected.

The compatibility function is straightforward and requires only two checks to validate compatibility
between the shape and the routing algorithm. Figure X7 shows the check for a p-shape. If the switch located
at internal intersection of both rectangles (the critical switch labeled as C in the figure) has a routing
restriction between the two links defining the boundary of the region, then the shape is not compatible. This
can be easily checked by the proper routing bits at neighbour switches A and B in the figure. In case of any
of those two bits are zero, then, in that case, there are no valid minimal paths for some pair of end nodes
(indeed between A and B) through the partition. For the remaining shapes a similar check is performed.
Indeed, all the shapes allowed are rotated versions of the p-shape.

Figure 10. Condition to allow a p-shape to be formed.

Notice that this strategy may endup in configurations where enough resources are available but the
underlying routing algorithm and the allowed shapes do not permit to achieve the mapping. This is the case
shown in Figure X7. The algorithm is called for a new mapping with 3 resources (available) but simply the
only possible shape (d-shape) is not compatible.

 17

Figure 11. Incompatible third mapping on the GPPA.

One possible solution for those shortcommings could be the remapping of the partitions to make room for
new compatible partitions. However, this would induce that already running threads in some nodes should be
migrated, with the associated overhead. If more flexibility is required, in this project the solution conceived is
to modify and adapt the routing algorithm to the mapped partitions (just the contrary to adapt partitions to the
routing algorithm). This is shown in the next section.

3.4. Mapping Strategy with Changing Routing Algorithm
The idea of this solution is quite simple and is indeed, an extension of the previous one. Indeed, when the
mapping algorithm fails to map a new partition, then, before quiting, it tries to adapt the underlying routing
algorithm. This is achieved by calling the function reconfigure_routing. This function drives a total change of
the routing algorithm driven mainly by the currently mapped shapes. For instance, if the previous d-shape is
required to allocate a new partition, the function is called and the underlying routing algorithm is changed to
the one shown in Figure 12. Now, the d-shape is allowed to be allocated, thus the algorithm is called again.

Figure 12. Changing the routing algorithm to allow a new d-shape partition.

Notice that, the routing algorithms shown so far perform the so-called zig-zag strategy when placing routing
restrictions. All these variants belong to the same routing filosophy embedded in the SR routing algorithm.
This zig-zag strategy is the most flexible one and will be used as the reference routing algorithm. Indeed, it
allows to map partitions with all the shapes allowed by the mapping algorithm.

Notice that changing the underlying routing algoritihm can lead to a severe desaster for the whole system.
This is because during the change some deadlocks can arise blocking the network and perpetuating the
situation until the system is rebooted. To avoid such unwanted probability, there are two alternatives. First,
the network can be drained, then the new routing algorithm is settled, and then the traffic is resumed (which
is called static reconfiguration). Second, a dynamic reconfiguration strategy that simply avoids this race

 18

condition from happening is used. This will be described below in this deliverable. In vIrtical, whenever the
routing algorithm needs to be changed (for any reason) the reconfiguration strategy will be invoked and will
guarantee the smooth transition between the previous routing algorithm and the new one with out any traffic
being significantly stopped.

3.5. Support for Global Network Traffic
Previously it was described the partitioning strategy for isolation in different partitions. However, the GPPA
nodes have shared resources they need to be accessed from time to time. This is the case of the L2 memory
and the NI connecting to the external system NoC. In such cases, there is a need to send messages from
local nodes in a partition to external resources. The previous mapping strategy simply does not allow this to
happen.

To solve this problem, the LBDR mechanism has been enhanced with more connectivity bits. Indeed, two
connectivity bits per output port are implemented instead of one. One is referred to as local and the other as
global. The local one is used by messages generated within the partition (messages sent from nodes to
nodes). The global one is used by messages addressed to shared resources or generated in those shared
resources and with destinations being nodes in a partition. With these bits, the LBDR mechanism is changed
appropiately. Indeed, a multiplexer is added to the routing logic. The multiplexer simply takes the connectivity
bit to check depending on the nature of the message. Messages, thus, need to encode in their header an
additional bit that will instruct the switch its nature. It is a intra-partition message, or is a inter-partition
message. Figure 13 shows the LBDR logic with the new components highlighted in red.

Figure 13. New logic to allow global and local traffic in the GPPA.

Notice that this change is orthogonal to the routing algorithm and does not compromise its deadlock-freedom
property. Indeed, the routing algorithm is applied to the whole network and both inter- and intra- messages
respect the same routing restrictions (routing restrictions are the same for all types of messages).

3.6. Possible Extension to Multiple Routing Algorithms
There is one possible new scenario when global and local traffic is allowed. This comes from the fact that
one can think each partition could have its own routing algorithm. This is the case shown in Figure 14.
Different SR instances are implemented on each partition, locally deadlock-free but globaly no. Indeed, this
is just the addition of unrelated routing algorithms. If global traffic is not going to be present, then this solution
is deadlock-free and probably each domain could have its optimum routing algorithm. However, if global
traffic is to be present, then a different solution is needed.

Figure 14. Example of local unrelated routing on each partition.

 19

For this case, when different routing algorithms are defined in each partition, in order to allow global traffic,
two virtual channels are required. One is for the local traffic and the other one is for the global traffic.
Message differentiation can be achieved with the previous bit defined for the message header. However,
there is an additional problem. Global traffic must have its own valid routing algorithm. Thus, at each switch
there is a need of having two different routing algorithm implementations. When being implemented in LBDR
this means the routing bits need to be duplicated and a multiplexor used, similarly as how it was done for the
connectivity bits. Figure 15 shows the implementation.

Figure 15. LBDR modifications to allow partition- and GPP-level different algorithms.

Notice that this solution doubles the overhead of LBDR (as double number of bits is needed). Although
LBDR cost is low, it should be analyzed the benefits of this proposal. However, this depends on the needs of
the local applications running inside the partitions to use a different routing algorithm.

 20

4. Dynamic Reconfiguration
To address the new functionalities, the NoC must be enriched with an efficient reconfiguration process which
enables the smooth and transparent transition between system configurations. For instance, Figure 16
shows two different configurations of a multicore system over time. In the first one (configuration A) different
applications are mapped to the NoC nodes and execute concurrently, while other resources are powered
down. Later, the resource manager may trigger a chip reconfiguration to power on unused resources and
thus activate a new application (configuration B).

configuration A configuration B

Figure 16. Two NoC configurations where the routing algorithm needs to be adapted.

The transition between configurations needs a careful design of the NoC routing algorithm, which establishes
the paths for every packet in the network. At each configuration a different routing algorithm is needed. In
both cases, the algorithm must be deadlock-free (should not introduce cycles in its channel dependency
graph). However, in the transition between configurations, both algorithms can induce extra dependencies
that lead to deadlock.

Therefore, in order to migrate from one configuration to the other, one possible approach is to drain the
network, then changing the routing algorithm to the new one and finally resuming traffic injection with the
new algorithm. This is the case of the so called traditional static reconfiguration (TSR). In this case system
performance is likely to be heavily impacted by the reconfiguration process due to the temporarily low
resource utilization. Alternatively, the network can be dynamically reconfigured, in the sense that traffic is not
stopped during the reconfiguration process, but an effort is needed to avoid deadlock situations. This is
typically achieved by devoting extra resources to the network. We refer to this case as the dynamic
reconfiguration.

In this work we advance the state-of-the-art in reconfiguration frameworks for NoC-based systems. However,
instead of designing a brand new reconfiguration mechanism, we recognize the large amount of bibliography
and proposals made for reconfiguration mechanisms in high-performance off-chip networks. In this sense,
we pick the approach that better suits the NoC domain and the tight resource budgets of the on-chip
environment.

The Overlapping Static Reconfiguration process (OSR) in [11] enables a transparent system reconfiguration
process. However, in [11] only the protocol was described while at the same time highlighting the key
architectural requirements to properly support it (namely virtual channels, routing tables, event notification,
involvement of end-nodes in the reconfiguration process). Unfortunately, no practical implementation insights
were provided, thus raising the reader's skepticism on the applicability of OSR to an on-chip setting.

Here we report the implementation of the native OSR protocol in an on-chip network, proving that the
needed network over-provisioning is such to make the protocol not viable in practice. As a consequence, we
target the modification of OSR to better match the requirements of the resource-constrained NoC setting,
thus resulting into the OSR-Lite framework. Such modifications concern both selected protocol features
(without giving up the goodness of the underlying idea) and relevant implementation techniques.

With OSR-Lite in place, it is possible to reconfigure a whole 64-node network in a few hundreds of cycles,
enabling the entire and transparent transition between any pair of independent and unrelated configurations.
Moreover, this is achieved with no impact on network latency and with no impact on switch delay. The

 21

reconfiguration performance of OSR-Lite makes it the enabling tool for planned reconfigurations in multicore
systems. The following specific scenarios can be therefore materialized by the outcome of this work:

- Virtualization of the system. Our method enables the runtime division of the entire network into
sets of virtual regions for assignment to different applications running concurrently. This is the
primary goal in vIrtical.

- Power management. The reconfiguration mechanism can be exploited for powering down unused
resources; such functionality becomes compulsory to keep power consumption levels to reasonable
bounds.

- Reliability. When a NoC is augmented with transient fault tolerance, then this kind of faults can be
tolerated without any loss of information. However, intermittent faults are likely to be an indicator of
the gradual onset of a permanent fault (typically, a wear-out fault). In this case, OSR-Lite can be
used to reconfigure the network so to exclude the affected link/switch component, before the
permanent fault shows up and causes packet loss.

4.1. Previous Work on Reconfiguration
During the last two decades, a large number of proposals have been presented about resilient routing for
both off-chip and on-chip networks. These approaches are either nonreconfigurable fault-tolerant routing
strategies which tolerate a limited number of faults [12, 13, 14, 15], or reconfigurable routing mechanisms
that allow unlimited changes to the network. We focus on schemes of the second category, in particular on
those based on reconfiguration processes that consider such changes to the network structure to obtain new
routing paths replacing the previous ones.

In off-chip networks, such as those used in clusters, during a reconfiguration process, the topology resulting
from the connection/disconnection or failure of network components is discovered by a central node, which
runs the reconfiguration algorithm in software. The management software computes new routing tables and
distributes them to each node. Detecting the new topology and communicating the new routing tables can be
completed with or without traffic into the network. Static reconfiguration first stops and drains all user traffic
from the network before completing the reconfiguration process [16, 17]. This reconfiguration method is
unable to provide real-time and quality-of-service support needed by some applications. On the contrary,
dynamic reconfiguration updates routing tables without stopping user traffic. In this case, the main challenge
is to guarantee deadlock freedom as old and new routing functions are simultaneously active [18, 19, 20, 21,
22, 23, 24, 11].

In the context of networks on chip, new techniques have been proposed and other retain some features of
the above. The Vicis NoC architecture [25] uses the turn routing model during fault-free operation, and a
heuristic solution that makes exceptions to that routing model to maximize connectivity. Reconfiguration
process rewrites the routing tables based on the information from built-in-self-test units in each router. When
large number of faults occur, exceptions sometimes result in deadlocked routing paths.

A reconfigurable fault-tolerant deflection routing algorithm based on reinforcement learning for NoC has been
proposed in [26]. The algorithm reconfigures the routing tables through reinforcement learning based on 2-
hop fault information. In [27], a reconfigurable routing algorithm for a 2D-mesh NoC is presented. This
algorithm introduces low hardware cost but can only be used in one faulty router or regular region topology.
Other proposals can deal with irregular fault regions. A mechanism to tolerate failures in networks for parallel
computers is described in [28]. It tolerates any number of failures regardless of their spatial and temporal
distributions. Immunet is limited by the network connectivity and results in high area overhead because it
requires three routing tables per router. In [29], a region-based routing has been proposed to handle irregular
networks. This algorithm groups destinations into regions to make routing decision. However, it does not
provide a reconfiguration method to migrate from one configuration to another.

Finally, [30] presented Ariadne, an agnostic recocfiguration algorithm for NoCs, capable of circumventing
large numbers of simultaneous faults, and able to handle unreliable future silicon technologies. Ariadne
utilizes up*/down* for high performance and deadlock-free routing in irregular network topologies that result
from large numbers of faults.

Ariadne is implemented in a fully distributed mode. Thus it results in very simple hardware and low
complexity although it comes with suboptimal solutions for lack of global view. The up*/down* routing will not
perform optimally under certain configurations, specially in the absence of failures (in a 2D mesh). In
addition, up*/down* routing is encoded in routing tables at switches. Unfortunately, the Ariadne latency badly
scales with network size (the configuration latency increases with the square of the nodes number). This

 22

latter property has a severe impact on the network performance especially because Ariadne does not
guarantee a transparent transition between configurations. The flits have to freeze in the network pipelines
and the throughput drops to zero during reconfiguration. Even when the communication resumes, a high
contention due to the fullness of injection queues strongly degraded the network performance for a long
period.

As opposed to these solutions, OSR-Lite does not use routing tables at switches, allows coding any efficient
routing algorithm (even DOR routing) and requires lightweight switch support to enable truly fast dynamic
reconfiguration. Moreover its latency smoothly increases with network size, and the configuration transition is
transparent, ultimately preserving the throughput of the system.

4.2. Native OSR technique
Typically, a routing algorithm is deadlock-free when its channel dependency graph (CDG) is acyclic (we do
not consider fully adaptive routing algorithms). The CDG is set by representing the resources of the network
by vertices (mainly the buffers associated with the ports of each switch) and the dependencies between two
resources by arcs. There is a dependency between two resources r1 and r2 if a message can use r1 and
request r2.

Two routing algorithms R1 and R2 are deadlock-free when they have an acyclic channel dependency graph.
However, when using both algorithms at the same time new extra dependencies are induced potentially
leading to deadlock. This can be seen in Figure 17 where a cycle is formed when using two routing
algorithms (XY and YX) at the same time. During a reconfiguration process we refer to Rold as the old routing
function and Rnew as the new routing function. Similarly, packets routed with Rold will be referred to as old
packets and packets routed with Rnew will be referred to as new packets.

The native OSR method is based on the fact that those cycles are created only when old packets using Rold
are routed after new messages using Rnew. If old packets are guaranteed to never go behind new packets
the extra dependencies do not occur in practice and then no deadlock can be formed. Indeed, in a static
reconfiguration process the entire network is drained thus guaranteeing old packets will never go behind new
ones.

Figure 17. Channel dependency graph for two routing algorithms and their combination.

OSR is a static reconfiguration process but localized at link/router level, and not at network level. Indeed, it
guarantees that new packets are only forwarded via links that have been drained from old packets. This is
achieved by triggering a token that separates old packets from new packets. The token is triggered by all the
end nodes and tokens advance through the network hop by hop. Indeed, tokens follow the CDG of the old
routing function, draining the network from old packets. However, in contrast with static reconfiguration, the
new packets can enter the network at routers where the token already passed. Figure 18 shows the
complete native OSR mechanism, involving a central manager. In a first step, a reconfiguration action is
triggered, either by the detection of a malfunctioning component or by a higher level manager in the system
stack requiring a reconfiguration, e.g. a new application is admitted. In any case, when needed the central
manager may receive event notifications through the network (step 1). Then, in step 2, the new algorithm for
the new configuration is computed by the central manager. The resulting information is disseminated to all
the switches in step 3. In step 4 the end nodes trigger the token and OSR spreads throughout the network
(step 5).

 23

Figure 18. Reconfiguration steps performed in an OSR environment.

Figure 19 shows how tokens advance in a network. At a given output port, a token is triggered to the next
downstream router indicating the output port has been drained from old packets. This is guaranteed when
the token has been received through all the input ports of the switch that have old (Rold) output dependencies
with the output port. These port dependencies can be extracted from the Rold routing algorithm. However,
how to perform this is not explained in [11], although it is key to obtaining an efficient implementation. Notice
that the token divides two epochs in the network, the old epoch (when packets are routed with the Rold
routing function) and the new epoch (when packets are routed with the Rnew routing function).

 (a) (b)

Figure 19. Token advance in a network: (a) check for absence of old messages and input ports
epoch, (b) token signal propagation. The token separates old traffic from new traffic.

4.3. OSR-Lite
The OSR mechanism needs to be modified in order to better suit the NoC environment so to become an
efficient and plausible mechanism for planned reconfigurations. Indeed, the main issues addressed in this
work are the following:

- Codification of the routing information. During the reconfiguration process both routing algorithms
coexist at the same time at routers. This means resources need to be sized for both algorithms. In
OSR, routing tables were used to store the routing info. In NoCs, however, routing tables are an
expensive resource in terms of access time, area, and power consumption. Therefore, hosting two
routing tables per switch input port does not appear to be a cost-effective solution for OSR-Lite.

- Control virtual channel (VC) used in OSR. Different actions (sending routing information to

routers, triggering the reconfiguration process) are performed during the OSR reconfiguration which
imply the exchange of information between a central manager and the routers or the endnodes. In
[11] this was implemented by means of a control VC. Unfortunately, using VCs only for that purpose
has a large impact on router implementation (wseen later) and is not fully justified in an on-chip.

- Reliable control VC assumed in OSR. A different (spanning-tree) algorithm is assumed in OSR to

effectively route control packets through the control VC.

 24

- Involvement of end nodes in the reconfiguration process. In OSR the end nodes were notified to

trigger the reconfiguration. This is done by end nodes injecting the token directly as a new packet. In
NoCs, reaching the end nodes via dedicated packets from the central manager would be a time-
consuming course of action. In order to cut down on the reconfiguration latency, involving only
switches and not endnodes in the reconfiguration would be an appealing property in a NoC setting.

Figure 20. Reconfiguration steps performed in an OSR-Lite environment.

In order to address all these issues, we propose the OSR-Lite approach. Figure 20 shows all the steps and
the main modifications performed. In particular, we exploit a control network through which routers can
inform about expected topology changes (e.g., an output link is having frequent transient failures and is
going to fail soon, or a region of the NoC is overheated and needs to be powered down). The control network
collects all the notification events and sends them to a central manager (step 1). If the reconfiguration is
instead initiated by a resource manager in the context of power management or virtualization strategies, step
1 can be skipped. The central manager then computes the new configuration (step 2) and disseminates the
new routing information to the switches (step 3). Then, every switch starts the OSR-Lite reconfiguration
process in step 4. Notice that end nodes are not involved in the reconfiguration process.

The control network can be used also in step 3 for routing bit dissemination to the switches. In previous work
in [31] we have presented the design of a dual network for switch-to-global manager bidirectional signaling,
thus offloading critical control tasks from the main data network. In that work, the dual network was used to
notify diagnosis information to the manager following the main NoC testing phase, and to notify configuration
bits of the routing mechanism to the switches. The same network could be reused for other purposes, such
as congestion management, deadlock recovery and software debugging. In [31] it is showed to be a cost-
effective solution for control signaling, which can be easily and effectively made reliable through a
combination of fault-tolerant and online testing strategies. For this reason, this work relies on such a fault-
tolerant dual network to convey control information of the reconfiguration process. Furthermore, [31] also
reports an efficient computation algorithm that comes up with the routing configuration bits of a new network
partitioning or topology shape. This is the algorithm the controller runs in step 2. Given that the control
network and the computation algorithm are covered by previous work, from now on we focus on the core
reconfiguration process of the network and on the microarchitectural support for that. The reader should
keep in mind that all these mechanisms will work together in the complete reconfiguration framework. In the
next section we describe the router implementation in more detail.

4.4. OSR-Lite implementation
Without lack of generality, we use the xpipesLite switch architecture [32] to prove viability of our OSR-Lite
mechanism. The switch implements both input and output buffering and relies on wormhole switching. The
crossing latency is 1 cycle in the link and 1 cycle in the switch itself. The switch relies on a stall/go flow
control protocol. It requires two control wires: one going forward and flagging data availability ("valid") and
one going backward and signaling either a condition of buffer filled ("stall") or of buffer free ("go"). We
assume the following parameter values in the architecture: 32 bit flit width, 6 flit output buffers and 2 flit input
buffers. To note that different flit width and input/output buffer depth could be assumed while preserving the
OSR-Lite mechanism implementation.

The switch architecture is extremely modular. A port-arbiter, a crossbar multiplexer and an output buffer are
instantiated for each output port, while a routing module is cascaded to the buffer stage of each input port.
We implement logic-based distributed routing (LBDR) [33] as described previously in this report. LBDR bits

 25

are computed by a central NoC manager and disseminated to the switch input ports through the dual control
network. Indeed, two sets of LBDR bits are allocated at each router for OSR-Lite. Upon receiving the new
routing bits, a router triggers the reconfiguration process by auto-generating initial tokens at its local input
port (port connected to an end node) and processing the tokens accordingly.

The logic enabling the OSR-Lite mechanism was integrated into the above mentioned baseline switch taking
care to preserve its modularity together with its performance. Thus, the OSR-Lite logic was designed in new
modules plugged into the switch without affecting the existing blocks. Moreover, the new modules were
instantiated for each switch port following the modularity of the baseline blocks (the OSR-Lite mechanism
can be extended for switches of every arity by means of simple logic replication).

Figure 21. Switch input buffer enhanced with the OSR-Lite logic and a new set of routing mechanism.

OSR-Lite at the Input Ports
As a first step, the baseline switch was enhanced with a second routing logic unit (LBDR1) collecting the new
routing info coming from the central manager. This unit is connected to the input buffer as the baseline
LBDR0 block (see Figure 21) although is used exclusively for routing packets in the new epoch (new
packets). The switch arbiters need to select the routing info from the appropriate routing logic block (either
LBDR0 or LBDR1). This is obtained from a multiplexer configured by the current epoch of the input port (in a
flip-flop). In order to reduce the reconfiguration latency, the input port evolves to the new epoch as soon as
there are no stored header flits at the input port with the epoch bit set to zero (Epoch 0 headers signal) and
the token has been received from the upstream switch (upstream epoch signal). Notice that in the case of
the ports connected to end node (local port; local port flag), the token is assumed to arrive with the arrival of
the new configuration bits (LBDR1 flag). In this case, the header flits located in the buffers are considered of
the new epoch when the new configuration bits have arrived and the routing mechanism (LBDR1) is set.
Notice that local ports do not introduce dependencies between channels that may lead to deadlocks,
therefore is safe to assume all the injected flits as belonging to the new routing function. To notice that the
token propagation will always start from local ports at switches, not involving end nodes.

The number of flit headers to be routed by LBDR0 and stored in the buffer is detected by a 2 bits counter
monitoring the incoming and outgoing headers of the input buffer module. The counter increases its value
when a header is accepted and the incoming token is low and decreases its value when a header is sent. In
order to preserve the max performance of the baseline switch, sequential logic stages were exploited to
avoid impacting the critical path in the OSR-Lite mechanism.

Notice that the implementation prevents possible race conditions from occurring. For instance, a token may
be received from the upstream switch before the new routing bits are received. In that case, the header flits
in the input buffers are stalled and declared not valid to the internal switch logic until LBDR1 is set.

OSR-Lite at the Arbiters
OSR-Lite requires a lightweight new module plugged around the baseline arbiters. The logic is reported in
Figure 22. Basically, a set of AND/OR logic blocks together with a set of EXOR blocks allow the arbiter to
process an incoming header exclusively when the epoch of the switch input port is the same as the one of
the destination output port. On the contrary, a packet residing in an input port with the new epoch is stalled
until the output port evolves to the new epoch (guaranteeing old packets go first and then new packets).

 26

Figure 22. Switch arbiter enhanced with the OSR-Lite logic.

OSR-Lite at the Output Ports
Concerning the output port, an output port evolves to the new epoch when all the input ports with output
dependencies to this output port have evolved to the new epoch. In order to efficiently deal with the
dependencies, OSR-Lite takes profit of the routing bits used in LBDR. Routing bits indicate the routing
restrictions that exist at neighboring switches. Therefore, they can be seen also as channel dependencies. If
the Rxy bit is set it means that there is a link dependency between the output port x and the output port y at
the next switch. On the contrary, if the bit is reset it means there is no dependency and in that case we can
safely assume no packets will come through the port x requesting output port y. Therefore, the output port
needs to receive both the epochs of the input ports and the routing restrictions located at the neighboring
switches. The mechanism is enabled by a set of OR blocks (each of them belonging to a different input port)
followed by an AND block, as represented in Figure 23.

Figure 23. Switch output buffer enhanced with the OSR-Lite logic.

In contrast with the baseline OSR technique (where the routing restriction information was saved in the
routing table), the OSR-Lite mechanism needs to obtain channel dependencies from the routing logic located
at neighbor switches. As a result, three additional routing bits are sent by the LBDR0 logic of the upstream
switch together with the token bit. To note that LBDR0 received its routing bits information through the
control network in an earlier configuration stage.
In addition, the input port needs to send the incoming routing restriction signals to the appropriate output
ports. Thus every link is extended by 4 additional wires (i.e. 1 token wire + 3 routing restriction wires). See
Figure Figure 24.

Finally, the token is sent by the output port to the downstream switch when all the input ports with
dependencies with the output port have evolved to the new epoch, meaning all these input ports have
drained all the old packets from their buffers (see the Local Epoch signal in Figure 23).

Once the network has completely migrated to Epoch 1, the central manager can safely fill LBDR0 bits with a
copy of LBDR1 bits, and instruct all the switches to safely swap to Epoch0 again. This allows for the system
to be ready in few cycles for a new reconfiguration process.

 27

Figure 24. Configuration information from neighbor switches and control network.

4.5. System-Level Evaluation
In this section, we evaluate OSR-Lite. First, we show how the OSR-Lite propagates over the network. Then,
we evaluate the reconfiguration time overhead under different injection rates using synthetic traffic.
Moreover, we compare the proposed reconfiguration with a static reconfiguration process in terms of network
latency. Finally, we provide performance results by running real applications in a full system simulator
environment.

Propagation
In order to simulate the reconfiguration process, we have modeled the OSR-Lite scheme in our event-driven
cycle-accurate network simulator. A 8 x 8 mesh is used with wormhole switching (although the proposed
method also works for virtual cut-through switching). Flit size is set to 4 byte and messages are 5-flit long.
For the transient state, 50K messages are assumed and results are collected after 50K messages are
received.

 (a) (b)

Figure 25. SR-Lite propagation over a 4 x 4 2D mesh topology: (a) scrolling up, and (b) scrolling
down.

Figure Figure 25 shows how OSR-Lite tokens propagate over a mesh when there is no traffic traveling
through the network. The diagonal arrows represent the bidirectional restrictions imposed by the routing
algorithm (Segment-Based routing [34] in this case). In this figure, the numbers inside the switches represent
the cycle when the token signal is propagated to its neighbors. Moreover, the arrows among switches depict
the direction of the token signal propagations. As we can see, the token signals propagate among switches
throughout the network in the order of the routing channel dependency graph, where Figure 25.(a) follows a
scrolling up zig-zag direction, and Figure 25.(b) follows a scrolling down zig-zag direction.

When no messages are traveling through the network and a regular 2D mesh is considered then the
number of clock cycles required for the OSR-Lite reconfiguration process is modeled by the following
formula:

 PropagationTime = (4xDx(D-1))-1

 28

where D represents the mesh dimension. As we can see, it is a very fast process as the protocol uses only
223 cycles when a 8 x 8 mesh is considered. The high speed of the OSR-Lite reconfiguration process allows
to perform frequent planned reconfigurations without affecting the integrity of the system operations.
However, when there are messages traveling through the network the switches must drain the input queues
of old messages before propagating the token signal as explained previously. This fact delays the OSR-Lite
propagation depending on the network load. In the following, we analyze this effect taking into account
different injection rates.

Time Overhead
In order to analyze the impact of the network load over the OSR-Lite reconfiguration framework, we have
performed different simulations varying the injection rate. For each rate, we assume a constant packet
generation rate for all end nodes. Moreover, in order to ensure that start-up instabilities do not affect our
evaluation results, reconfiguration is not invoked until the network is completely stabilized. Figure Figure
26.(a) shows the performance obtained in a 8 x 8 2D mesh network under uniform traffic when no
reconfiguration process is triggered. The figure indicates the three network injection rates that are used in
the simulations. In what follows, the three rates are referred to as Low, Medium, and High, respectively.

 0

 20

 40

 60

 80

 100

 0 0.25 0.50 0.75

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

Traffic (flits/cycles/switch)

Low Medium
High

 (a) (b)

Figure 26. (a) Average message latency at different injection rates for SR routing on 8 x 8 2D mesh
(b) OSR-Lite propagation over a 8 x 8 2D mesh topology at different injection rates.

Figure 26.(b) shows the number of cycles involved in the propagation of the OSR-Lite process taking into
account the three different injection rates. Each bar depicts the mean of 30 simulations varying the seed.
Moreover, we show the error bars that represent the 95% confidence interval. As we can see, the
propagation time does not exceed 242 cycles for the High injection rate. Moreover, the difference between
both the minimum and the maximum network loads is only 14 cycles, and therefore, the network traffic
condition has a minimal effect on the OSR-Lite token propagation.

Finally, the contribution in terms of cycles for event notification (A), algorithm computation (B), configuration
bits delivery (C) and OSR-Lite propagation (D) should be taken into account to determine the total latency for
a complete reconfiguration process. In particular, (A) and (C) latencies depend on the position of the
components to reconfigure with respect to the central manager. On the other hand, (B) and (D) latencies are
related to the number of components to reconfigure and the traffic injection rate respectively. As an example,
when we consider a 8 x 8 mesh then at most 66 cycles are required to cross the control network. Moreover,
if 7 switches need to be reconfigured (i.e. the scenario of Figure 16) then 195 cycles are required by the
computation algorithm in [31]. Finally, 242 cycles are spent by (D) in a High injection rate scenario. Summing
up, the total amount of cycles for a complete reconfiguration process is the following:

 66(A) + 196(B) + 66(C) + 242(D) = 569 cycles

For dissemination of new LBDR bits to the switches, the dual network has to carry 17 bits per switch.
However, not all switches need to be reconfigured, since the algorithm in [31] is able to evolve a system
configuration into a new one while updating the minimum amount of LBDR configuration bits.

Comparison
In this section we compare the OSR-Lite protocol and the traditional static reconfiguration process (TSR).
Figure 27 represent the average network latency respectively under hotspot traffic and uniform traffic with
Medium and High injection rates, where both reconfiguration processes (OSR-Lite and TSR) are invoked

 29

after 150K cycles. Moreover, we have plotted two additional lines: the average message latency for the full
mesh (Full-Mesh), and the average message latency for the mesh which has one link disabled from the
beginning of the simulation (1-Fail-Mesh). Notice the y-axis is in logarithmic scale. Moreover, we have
selected a random link in the 8 x 8 mesh as faulty. Under hotspot traffic pattern, 5 nodes are randomly
chosen as hot spots which receive an extra proportion of traffic (30%) in addition to the regular uniform
traffic.

The first observation is that both Full-Mesh and 1-Fail-Mesh obtain a different message latency. This is
normal because the 1-Fail-Mesh suffers a latency degradation due to the disabled link. On the other hand,
the two reconfiguration processes (OSR-Lite and TSR) start at the same time at the 150K cycle. At this point,
the reconfiguration process moves from the Full-Mesh to the 1-Fail-Mesh topology. This effect can be
estimated by the figures as the latency evolves from the latency obtained for the Full-Mesh to the latency
obtained for the 1-Fail-Mesh. However, an important result based on the figures is that OSR-Lite performs
the reconfiguration without degrading the obtained performance. In this case, the obtained latency grows up
to the 1-Fail-Mesh line. Therefore, the latency is always near the maximum obtained with the 1-Fail-Mesh
topology. In the TSR case, on the contrary, the latency is degraded due to the reconfiguration process
overhead (need to drain the network). In the three cases, the latency grows above the 1-Fail-Mesh latency
until it stabilizes. Specifically, in the Figure 27.(c) the latency of the TSR line grows to more than 500 cycles,
and then stabilizes after 350K cycles. In this period of time, the TSR reconfiguration is degrading the
obtained latency more than the link failure degradation produces. On the other hand, the OSR-Lite latency is
upper bounded by the 1-Fail-Mesh latency.

 10

 20

 40

 100

 500

150K 250K 350KAv
er

ag
e

La
te

nc
y

(c
yc

le
s,

 lo
g

sc
al

e)

Time (cycles)

Full-Mesh
1-Fail-Mesh

TSR
OSR-Lite

 10

 20

 40

 100

150K 250K 350KAv
er

ag
e

La
te

nc
y

(c
yc

le
s,

 lo
g

sc
al

e)

Time (cycles)

Full-Mesh
1-Fail-Mesh

TSR
OSR-Lite

 10

 20

 40

 100

 500

150K 250K 350KAv
er

ag
e

La
te

nc
y

(c
yc

le
s,

 lo
g

sc
al

e)

Time (cycles)

Full-Mesh
1-Fail-Mesh

TSR
OSR-Lite

 (a) (b) (c)
Figure 27. Average message latency with (a) hotspot traffic and uniform traffic ((b) medium network

load and (c) high network load).

Interestingly, the hotspot traffic and the uniform traffic with a High load have similar reconfiguration
performance. Then, we can observe that the OSR-Lite has no impact on the message generation while the
TSR process does. In fact, the TSR process increases considerably the obtained latency for all the cases.
The main reason is that TSR queues all the messages at end nodes during reconfiguration while that need
disappears in the OSR-Lite scheme.

Performance with Real Applications
In the following, we present performance results when real applications are used. In this case, we use a full-
system simulator based on Simics-GEMS [35,36]. Regarding the on-chip network, we have used the same
configuration as the previously detailed. Messages are 8-flit long for control messages and 72-flit long for
data messages. As workload, we have used the PARSEC v2.1 benchmark suite [37]. Although we have
used all the applications from the PARSEC v2.1 benchmark, due to the lack of space, we only show results
for two applications: Blackscholes, and Streamcluster. In all cases, Simsmall input set has been used.

Figure 28. Performance with real applications.

 30

Figure 28 shows the execution time, the network latency, and the network throughput. All the results are
shown in normalized terms with respect to the results of a fully connected 4 x 4 mesh without link failures.
The x-axis depicts the 1Fail topology (a 4 x 4 mesh topology with 1 link failure), and 1Fail-OSR-Lite that
represents the same topology as 1Fail but, in this case, the OSR-Lite reconfiguration process is triggered in
the middle of the application execution. Therefore, for this latter case, we pass from the fully connected
topology to the 1Fail topology using the OSR-Lite reconfiguration. These results are shown for both
Blackscholes, and Streamcluster PARSEC applications.

As we can see, the performance degradation is minimal for both cases (1Fail and 1Fail-OSR). Regarding the
1Fail-OSR case, obviously the degradation is lower because the link failure only affects half of the
application execution, and the execution time degradation does not exceeds 3% of execution time overhead
in any application.

4.6. Synthesis results
The implementation of a switch enhanced with the OSR-Lite mechanism has been compared in terms of
area and routing delay with a switch based on the native OSR mechanism described previously and the
baseline xpipesLite switch architecture [32]. The evaluation will demonstrate the infeasibility of the native
OSR mechanism for an on-chip setting because of the need for VCs and the low scalability of routing tables.

For the experiments, an industrial memory compiler for a 40nm process technology was used to generate
the memory macros required by the routing tables of the OSR mechanism. The switches together with their
reconfiguration mechanisms were synthesized for the same 40nm industrial library.

Area Comparison
The description of the OSR mechanism in [11] focuses on the protocol details and it lacks of practical
implementation details. Thus we exploited the information provided in [11] to model the OSR mechanism at
RTL level and evaluate this latter solution in an on-chip constrained system. Especially, the OSR mechanism
relies on 1 data VC supported by an additional control VC, and it adopts routing tables. As a result, we
implemented the OSR mechanism into a 5 x 5 switch augmented with VCs by following the design
techniques for area efficiency in [38] and we enhanced the switch with the 40nm memory macros to model
the routing tables.

The 8 x 8 mesh topology is considered. Thus, 64 end-nodes are the total number of destinations in the
system. When routing tables are used for distributed routing, each switch input port has a memory module
with a number of words equal to the amount of destinations. Every word is composed of 3 bits, matching the
switch radix. Given a destination ID, the switch selects the target output port based on look-up table. The
minimum word width that the memory compiler, at the 40nm technology node, can generate is 4 bits. As a
result, above all the available memory cuts, a single-port low-power RAM with 64 words of 4 bits was the
memory cut showing the lowest routing delay and area footprint.

Finally, Figure Figure 29 shows the area footprint of this latter solution (the OSR SW) with respect to a
baseline switch and our proposed solution (OSR-LITE SW). In particular, the OSR-Lite area overhead takes
into account also the contribution of the control network carrying the information from the global manger to
the routing mechanisms. For this purpose, we exploited the fault-tolerant control network proposed in [tecs].

The OSR-Lite reconfiguration mechanism requires a 14% of area overhead with respect to the baseline
switch. This result is mainly due to the additional LBDR routing mechanism (+12%) contribute. On the other
hand, the area overhead of the remaining reconfiguration logic is negligible when integrated into the switch.

Interestingly the OSR-Lite switch outperforms the baseline OSR switch: this latter requires approximately two
times larger area than the counterpart solution. This result is mainly due to the severe area penalty
introduced by the VCs and the 65% area saving achieved by the LBDR mechanism with respect to the
routing table.

As a last consideration, the routing mechanism of the OSR-Lite solution scales with network size. In fact,
while the memory macro suffers from increasing area and delay penalties, the logic complexity of the
distributed routing algorithms does not depend on the number of destinations, hence it stays constant.
Indeed, the distributed routing algorithms just grow with the switch radix.

 31

Figure 29. 5x5 switch (a) area comparison.

Routing Delay Comparison
In order to evaluate the effects of the OSR-Lite mechanism on the switch routing delay, we performed the 5 x
5 switch synthesis for maximum performance. The same experiment was repeated for both the baseline
switch and the switch augmented with the baseline OSR mechanism. The OSR-lite switch and the baseline
switch achieved a similar maximum operating speed of 750 MHz. The reconfiguration scheme was designed
to avoid long critical path and preserve the baseline switch performance. Our OSR-Lite-enabled switch is
thus capable of an at-speed reconfiguration.

On the other hand, the OSR switch is the 35% slower than our proposed solution. This result is mainly due to
the intrinsic complexity added by the VC logic and the delay required to access the 64 words RAM routing
tables.

 32

5. Quality of service
One of the key features for effective virtualization in embedded systems is that of providing APIs to
application developers in both the open and embedded virtualized environment to allow them to negotiate
with the hypervisor in terms of QoS/SLA. This goal will be pursued within our project by considering a
vertically integrated approach where suitable high-level constructs will be designed and implemented within
a widely adopted and understood parallel programming model such as OpenMP. The compiler and
runtime systems will be in charge of actually interacting with the hypervisor to ensure that the desired goal is
achieved with the maximum efficiency in terms of different metrics (QoS, energy). In order to complete the
picture, the link to the hardware is needed. In this project, a NoC infrastructure natively conceived for best-
effort communications will be progressively augmented to also serve QoS traffic flows. As a guiding
philosophy, QoS guarantees will be provided in terms of prioritized traffic (with reconfiguration capability of
priorities to match the requirements of multiple use cases) and even of more aggressive circuit switching
techniques.
As a main innovation with respect to state-of-the-art QoS NoC frameworks, vIrtical fosters two main
approaches:
1- QoS for NoCs is impractically implemented in hardware only, due to the large and hard-to determine
number of possible use cases at run-time. A proper mix of hardware facilities and software controlled
management policies is vital to achieving efficient results.
2- In this project we are going to offer runtime QoS differentiated services by leveraging runtime
reconfiguration of the NoC backbone. It is worth observing that virtualization and QoS are two tightly
interrelated requirements for embedded systems. In this direction, the extension framework of NoCs for QoS
will be synergic with the routing mechanism extensions for network partitioning and isolation illustrated
above.
Given that, this section of the deliverable reports on a soft-QoS package made available by vIrtical to
deliver QoS guarantees to network packets/flows, and that is structured into:

• packet-level soft-QoS through priority-class round robin;
• flow-level soft-QoS through message-class VC allocation;
• full bandwidth reservation (circuit-switching).

The implementation of the proper hardware support to materialize the soft-QoS package cannot overlook the
highly dynamic landscape of the GPPA environment, where network partitions are allocated/deallocated at
runtime. The deliverable therefore captures the fundamental interdependencies between the runtime
reconfiguration support of the GPPA NoC and the need to preserve QoS provisions of running
communication flows at any time.
In the future, the above items will be the tuning knobs in the hardware for the QoS requirements that the
programming model will require through the hypervisor.

5.1. Packet-level soft-QoS through priority-class round robin.
One of most commonly used arbitration policies in NoC switches are Fixed-Priority and Round-Robin. The
first is unbalanced by definition, indeed the contention is won always by packets from input ports that have
the higher fixed priority. The second operates on the principle that a request which was just served should
have the lowest priority on the next round of arbitration. Applying it to a single switch, we get that every
packet is equally treated but this loses its validity considering a larger scenario, like a whole NoC or simply a
part of it.

Figure 30: Round Robin policy loses its fairness scheduling switch_B traffic.

In Figure 30 many masters (M_A, M_B, M_C, M_D, M_E) want to approach the same slave resource (S). It’s
obvious that a Round Robin policy can’t provide an equal sharing of the resource, because packets from
north input port (from switch A) get the 33% of grants, the same for packets from M_B, and the remaining

 33

33% is (unequally) divided between M_C, M_D, and M_E, all arriving from west input port, losing fairness.
The above issues can be solved by combining the two arbitration policies into a hybrid policy. By
construction, round robin corrects the unbalancing property of fixed priority, while fixed priority can offset the
global imbalances that arise in a round-robin NoC. Weighted round robin is an example of such hybridized
arbitration policies: thanks to weights, the available bandwidth is not equally split among contenders, but an
heterogeneous bandwidth allocation is performed. We did not find this to be a good match with the
requirements of a GPPA, where differentiated bandwidth assignments to switch ports are a bit innatural. In
contrast, in a GPPA it is possible to identify packet types and traffic flows among which a priority ranking
should be established. Within each service level, there is then no reason for establishing further priority
rankings, therefore round-robin can be applied. The reason for establishing priority rankings in a GPPA can
be manyfold. On one hand, we may have the need for functional differentiation of service classes. In this
direction, instruction cache-line refills should be prioritized over data transfers not to stop execution,
especially in an architecture where we have long physical paths to achieve the centralized L2, while data is
predictably stored in local scratchpad memories. On the other hand, some inter-core or inter-cluster
communications might be more critical than others based on the software knowledge of their exact meaning
in the context of the application. Finally, priorities may be a way of fixing topology-dependent unbalancing
effects, such as the case presented in Figure 30, by enhancing the priority of poorly served packet flows. At
the same time, control packets associated with platform management (e.g., reconfiguration directives) clearly
deserve a dedicated service class.
In vIrtical, a priority-class round robin arbitration policy was therefore developed and used, consisting of
two-step arbitration: on the first step, requests are simply filtered based on their priority level. Then, round-
robin is applied in case multiple concurrent requests exhibit the same higher priority level. The behavior is
shown in the figures below.

Figure 31: Arbitration in case of packets of different priority levels.

Figure 32: Arbitration fairness within the same priority level.

As shown in Figure 31, if the contention is between packets of different priority levels, the allocator gives the
grant at packets with the highest priority, so they reach the output port first. The lower priority packets,
instead, are stalled until the end of high priority traffic.
Figure 32 shows the case the traffic packets are at the same priority. In this case the allocator gives grant
according to the classic RoundRobin policy that, in its basic form, is a simple scheduling, allowing each
requestor an equal share of the access in a limited processing resource in a circular order.

From an implementation standpoint, to ensure the correct operation, we extend a Round-Robin based
baseline arbiter replicating all the state registers of the arbiter on a per-priority basis. We also add a specific

 34

algorithm to detect the priority of incoming packets, selecting the proper range of bits (3 bits needed to
create 8 levels) out of the header flit of the packet, and furthermore, a state variable that stores the current
priority level. In this way the requests, received by an arbiter, are filtered by the priority levels, serving first
the highest level. So using this sort of priority detector, the contention for the grant is only about requests of
the highest priority packets, then decreasing to lower levels. When there are no requests of higher priority,
the contention passes to lower level requests.
Still using the state variable, the arbiter updates only the future value of new pending requests for a specific
priority level, ensuring the maintenance of the classic RoundRobin circular order, but specifically for each
level. Every request and pending request vector is replicated once for each priority level.
In order to set priority traffic in the system, we enrich the information of a packet adding a 3-bit QoS field
embedded in each header, this way enabling up to 8-level priority schemes to classify different types of
traffic within the system. Thus the level 0 has lowest priority and level 7 is the most prioritized (see Table 2).

PRIORITY LEVELs Bits encoding
0 (lowest) 3 ‘b000
1 3 ‘b001
2 3 ‘b010
3 3 ‘b011
4 3 ‘b100
5 3 ‘b101
6 3 ‘b110
7 (highest) 3 ‘b111

Table 2: QoS encoding on header packets.

Using this priority assignement with 8 levels, we intend to serve both user-specified and
architecture/topology-dictated priorities. The former ones are associated to the QoS requirements of the
application (e.g., achieving a given processing rate), while the latter ones are associated to functional
requirements (e.g., a low-latency platform configuration) or to structural imbalances (e.g., topological
imbalances). In the next subsection, some experimental results are presented.

5.1.1. Validation of the arbitration policy

Now we present some functional validation tests of the priority-class round robin arbitation. The first
experiment refers to arbitration inside a single network switch. Experiments were performed with an RTL-
equivalent cycle- and signal-accurate SystemC simulation environment.

Figure 33: (a), (b), (c), (d): validation tests about the accurancy of a switch scheduling algorithm with priority

class round-robin policy. The target output port is south (S), and the actual transmission rate at conflicting input
ports is reported.

 35

We consider a 5x5 switch where N, E, S, W, L are identifiers of north, east, south, west and local
input/output port, supposing N, E, W and L are transmitting packets that want to reach the S output port.
Based on packet priority we can have the following cases:

- Figure 33 (a): local input port is transmitting high prioritized traffic in a continuous way (“continuous”
means that there is no idle time between a packet and the next one). So, even though north, east
and west port want to transmit their packet throught the south port, the arbiter contention is won by
prioritized traffic and the output port is reached only by traffic from local input port.

- Figure 33 (b): we suppose local, east and west input port have the same high priority level, and

continuous traffic (north has lower priority packets). So the arbiter gives grant in a circular way to
these ports, according to classic R-R policy, simply filtering the port with low priority traffic.

- Figure 33 (c): if all the input ports (N, E, W, L) have traffic at high priority level the whole arbitration

behavior is aligned to a baseline Round-Robin scheduling and there is fairness about getting the
grant between all input ports that are transmitting.

- Figure 33 (d): this is a particular case of situation shown in Figure 33 (a). In this case we consider
local input port with high priority traffic and east port with a lower one (north and west port are not
transmitting). If the idle time between packets of the higher level is enough to allow the trasmission
of a packet of lower level, the situation is balanced as shown in the figure. In particular, considering
packets composed by 3 flits-per-packet (header, payload and tail), the situation proposed is obtained
considering idle time (x) 1 ≤ x ≥ 6. If there is no idle time the situation is the same of Figure 33 (a),
else if x > 6 the graph will be unbalanced in favour of traffic from the east input port.

Now we consider a larger scenario, a whole 4x4 NoC composed by 16 5x5 switches (north, east, south and
west ports plus the local one connected to the master for switches between 0 to 14, and to the slave for
switch 15), as shown in Figure 34. This scenario resembles the instruction cache refill network in the GPPA.

Figure 34: A 4x4 NoC composed by 5x5 switches. Red arrows indicate the routing restrictions provided by the

routing bits (RBITS) of the LBDR mechanism.

We consider fifteen masters and one slave, connected to the local port of switch 15. All the masters inject
traffic in the network, asking to reach the slave. As already argued in Figure 30, in this topology there is an
unbalanced allocation of bandwidth because of the switch position in the topology itself: for instance, it’s
obvious that traffic injected by master 11 e 14 is privileged over any other, because of their position closer to
the final destination.
Considering every master is injecting packets with the same priority level, with idle time between a packet
and the next one of 25 clock cycles, stopping the simulation after 1000 packets arrived at slave 15, the
results we obtain are shown in Figure 35.

Figure 35: the graph shows how many packets have access to slave_15 after 1000 packets

arrived, specifying on the x-axis their source master.

As we can see, this is a very unbalanced situation, and in the GPPA this would mean that some
cores/clusters get more instructions to execute than others, causing a general execution
misalignment.In order to restore fairness, we inject a prioritized traffic, increasing the packet
priority of masters that are discriminated by their position. When we consider increasing priority
as a function of the distance from the destination, then we get the fair bandwidth allocation of
Figure 36. It should be observed that the achieved fairness also depends on injection rate.
Clearly, high-priority nodes with high injection rates end up starving the others. However, this
issue is mitigated by the traffic types that are served by the NoC in a GPPA. In fact, traffic flows
concern cache-line refills and inter-cluster communications, that are relatively unfrequent
events. For this reason, at this time we did not consider it worth taking the proper course of
action against starvation. Later, upon actual GPPA implementation, this assumption will be
validated and the architecture improved if needed (for instance, through virtual channels).
Finally, it is worth recalling that the large number of priorities we implemented (8) is such
to suffice both for this kind of topology effects for the typical scale of a GPPA, but also to
get some performance differentiation based on application criticality, and to get special
service classes for control messages.

Figure 36: Fair bandwidth allocation through priority assignment.

5.1.2. Implementation overhead

Finally, in this section, we present the experimental measurements we performed on two 5x5
switches. The first switch makes use of an arbiter without any priority-class round robin support,
while the second one implements the service classes. The reader should recall that the
xpipesLite switch is considered as the baseline architecture, and that in this VC-less
architecture one allocator is instantiated for each output port of the switch.
The measurements have been performed by synthesizing (with Design Compiler) both switches
at max performance. We used a low-power, standard Vth 40nm industrial technology library
(Vdd=1.2V) and we measured the area and the critical path delay.

 37

(a) (b)

Figure 37 (a) Normalized area overhead at the switch level; (b) Normalized area overhead at the
allocator level.

Figure 38: Normalized critical path delay overhead at the switch level.

Figure 37 shows normalized area overhead of switches (left side) and arbiters (right side). From
Figure 37, it appears that the total area of the switch with priority-class round robin is 15% larger
than that of the switch without any QoS support. This increase is due to the increased control
logic implemented in the allocator, to the large number of supported priorities, and mainly to the
need of replicating the allocator state on a per-priority basis. When we consider the allocator-
level report, this overead is tangible. On the other hand, it is worth recalling that the xpipesLite
switch used for comparison is the most lightweight switch one can ever find in a NoC, with just
simple network functionality. Should the switch complexity grow (e.g., fault-tolerance, testing,
runtime reconfiguration), then this overead would be rapidly absorbed. Also, with respect to the
GPPA as a whole, it is reasonable to expect that the NoC has a marginal impact over the total
area footprint.
As regards the critical path delay (see Figure 38), the switch with priorities is 27% slower than
the reference one, since the allocator extensions go on the critical path. Overall, we could say
that most of the overhead comes from the decision to enforce fairness among packets of the
same priority class, not from the support of priorities themselves.

5.2. Flow-level soft-QoS through message-class VC allocation

As described in section 3.5, global network traffic in the GPPA (e.g.,for instruction cache line
refills) could be accommodated in the on-chip network without any virtual channel, provided the

 38

routing algorithm for the local partitions and for the global communication does not change (only
connectivity bits change). From a QoS perspective, this architecture design point can be
extended with virtual channels just at the same for specific performance optimization goals. In
practice, in vIrtical we will consider two virtual channels in order to reduce the interaction of
intra-partition and L2 global traffic to NoC links only. One virtual channel (VC0) is used for intra-
partition communications, while the second one (VC1) is used for L2 signaling. VC1 will also be
used by the master port of the top-level NoC (the STMicroelectronics' STNoC) to write code and
data to the L2 of the GPPA and/or data to the culster scratchpad memories. Some solutions in
the high-performance computing domain (e.g., the Tilera manycore processor) opt for the
extreme approach of full network replication, with each network dedicated to a specific traffic
class. We do not go that far, since GPPAs lie at the boundary between SoCs and chip
multiprocessors, and resource budgets are still constrained in this domain. In this context, we
prefer to retain unified network links between the two virtual networks, while optimizing for their
bandwidth exploitation through the virtual channel solution.

A further increase in the number of virtual channels may be due to deadlock avoidance issues.
In fact, traffic toward the L2 consists of memory requests and memory responses, which is
subject to protocol-dependent deadlock. The simplest workaround for this problem consists of
having 1 virtual channel for memory requests, and another one for memory responses. For
intra-partition communication, this is not the case, since it is in principle possible to have one-
way communications only between clusters. As an effect, in the GPPA we currently envision
3 virtual channels:

- 1 for intra-partition communications

- 1 for memory requests to the L2

- 1 for memory responses from the L2

5.2.1. Multiswitch virtual channel implementation
In vIrtical, we use a simplified yet efficient implementation of virtual channels.The conventional
implementation style of virtual channels consists of multistage arbitration. Let us focus on the
following extension of the xpipesLite switch taking this approach to implement virtual channels.

VC Arbiter

VC 0

.

.

.

Port Arbiter

Req

Grant

VC 1 Req

Grant

.

.

.

Input port

VC Arbiter

VC 0 Req

Grant

VC 1 Req

Grant

.

.

.

Input port

Req

Grant

Port Arbiter

Req

Grant

Req

Grant

Req

Grant

.

.

.

VC 0Data

Status

VC 1Data

Status

.

.

.

Output port

VC 0Data

Status

VC 1Req

Status

.

.

.

Output port

Figure 39: Multistage implementation of a virtual channel switch (2 VCs are showed).

For the sake of simplicity, the focus of this section is restricted to statically allocated Virtual
Channels (VC) and to deterministic routing algorithms.The switch input port receives the virtual
channel identifier (ID) together with the flit from the upstream switch. This ID is used to select

 39

the virtual channel where arriving flits must be stored (Figure 39). Also, a stall signal is
generated by each virtual channel and propagated upstream to the attached output port to notify
availability of buffer space on a per-VC basis. Each virtual channel implements its own buffering
space and a very simple LBDR decoding logic that computes the target output port. Switch
allocation is performed immediately after the flit arrives, and the routing information is used to
identify the intended switch output port. VCs are assigned nonspeculatively after switch
allocation: the winning VC that is granted access to a given output port automatically reserves
the VC with the same ID at that output port. This is because VCs are statically allocated. As will
be clarified shortly hereafter, it can never occur that a VC is granted access to an output port
and the intended VC at that port is occupied.
Switch allocation can be performed with a separable input-first allocator. Since allocation
requires 2 stages of arbitration we call it the multistage architecture. One rule that is enforced
during switch allocation is that a flit, either head or body flit, can only win the arbitration in the
first stage if it requests an output VC that has free buffer space and is not in use by another
input VC. In practice, the first stage arbiter filters the requests for nonfree output virtual
channels. This way, it is not possible to waste a cycle by selecting a winner in switch allocation
that will find its target virtual channel reserved or with no space. To provide fairness among all
the input virtual channels, if the winner of the VC arbiter does not win the port (second-stage)
arbitration, it receives the highest priority in the virtual channel arbiter. This guarantees that the
last winner will be proposed again as soon as possible.

VC SWITCH

A
R
B
I
T
E
R
S

M
U
X

VC_ID

VCïLESS

SWITCH

VCïLESS

SWITCH
OUT N

LINK_0
INPUT

OUT 0

Figure 40: Multiswitch implementation of a virtual channel switch (2 VCs are showed).

An alternative VC switch architecture consists of replicating not just buffers per channel, but
rather the entire baseline VC-less switch as many times as the intended number of virtual
channels (Figure 40). Replicated switches then share the same physical input and output links,
similar to what conventional VCs do, but with the main difference that in the new implementation
VCs have their own access to a replicated crossbar and the first stage of arbitration can be
finally removed. This solution will be denoted as the multiswitch VC implementation. The
underlying principle is simple: instead of replicating buffering resources inside a switch, the idea
is to replicate the baseline VC-less switch without impacting its internal critical path. Similar to
the multistage architecture, also this solution requires an additional stage of link arbitration in
order to multiplex the outputs of the baseline VC-less switches into the same physical output
links connecting to downstream switches. As Figure 40 indicates, this stage is cascaded to the
replicated VC-less switches it arbitrates on a flit-by-flit basis while the arbiters of the replicated
switches keep arbitrating at the packet level. Interestingly, delay of this arbitration stage does
not add up to that of the VC-less switches to determine the critical path, since they are
separated by a retiming stage (the switch output buffers). In practice, the critical path of the
multiswitch architecture is the same of a VC-less switch, since it does not make use of a

 40

multistage arbiter. However, one might argue that this comes at the cost of replicating more
physical resources (e.g., the crossbars). At this point, a basic principle of logic synthesis comes
into play and leads to opposite conclusions. When comparing the multistage with the
multiswitch VC implementations, this latter has less functions on the critical path, hence
potentially resulting in a more area/power-efficient gate-level netlist after logic synthesis. In fact,
the multiswitch architecture certainly provides a higher maximum speed than the multistage
one. However, if we require the two architectures to be aligned to the speed of the slowest one
(the multistage), then combinational logic of the multiswitch design can be inferred with relaxed
delay constraints and therefore thoroughly optimized for area and power. In practice, a different
design point along the area-performance optimization curve can be inferred.

Figure 41: Multiswitch VC switch of the GPPA, with control network for selective virtual

channel reconfiguration.

5.2.2. Specialization for GPPA
vIrtical will adopt the multiswitch implementation of a virtual channel architecture. When
considering the distinctive features of the GPPA, we end up in the final architecture of Figure
41, which is a novel contribution of vIrtical. The figure shows a virtual channel switch,
implemented by VC-less switch replication. At this point, it is worth recalling that VC0 is used for
intra-partition messaging only. As such, this is the only virtual channel that needs to implement
the runtime reconfiguration of the routing function. In fact, the number of partitions change over
time. In contrast, the other virtual channels enable global traffic, hence its routing function does
not undergo any runtime reconfiguration (unless we want to consider the possibility of dynamic
rerouting to account for possible malfunctions that might show up at runtime). Given that, the
figure shows a control network which is connected only to the top virtual channel: it brings the
control signals of the OSR-Lite reconfiguration mechanism, selectively to the intended virtual
channel/VC-less switch. As dictated by section 3.5, the three VC-less switches might have the
same routing restrictions but different connectivity bits. However, in the more flexible
scenario of section 3.6, the three switches might actually work with different routing
restrictions as well. In fact, the proposed architecture already routes local and global traffic
across different virtual channels, hence preventing the occurrence of deadlock due to mixing up
of packets with different routing algorithms in the same buffers. Whenever full bandwidth
reservation needs to be delivered (see section 5.3), then the architecture in Figure 41 still holds
provided VC0 has its own links in addition to buffers. In practice, we would need a multi-network
solution, as illustrated shortly hereafter. VC1 and VC2 would then belong to a separate network
than the one of VC0.

Finally, the output arbiters were set to implement the following arbitration policy:

 41

- when conflicting packets from VC0 and VC1/VC2 have the same priority, VC1/VC2 is
prioritized (to enable prioritized instruction cache line refills)

- when conflicting packets from VC0 and VC1/VC2 have different priorities, then the VC with the
highest priority is prioritized.

Table 3. Area and power overhead of VC implementation styles.

5.2.1. Implementation overhead
The issue is to determine whether the area savings achieved by logic synthesis are enough to
compensate for the larger amount of hardware resources that are instantiated in the multiswitch
architecture, especially the replicated crossbars. Please observe that the multistage and the
multiswitch architectures can be designed to instantiate the same overall amount of buffering
resources: N VC queues in the multistage switch are equivalent to a single queue in N
replicated switches. Table 3 summarizes the area/critical-path of two 5x5 virtual channel switch
(VC multiswitch and VC multistage) synthesized with the same 40nm technology library. The
designs were synthesized at their maximum performance first, then the delay constraint was
gradually relaxed, thus getting area/critical path results as illustrated in Table 3. From the
column five of Table 3, it appears that the multiswitch architecture can achieve a higher speed
(29%) than the multistage one since it implements less control functions on the critical path.
Therefore, the physical synthesis tool can reduce the area of this design by 14% while relaxing
its performance constraints. It is then possible to match the same maximum speed of the
multistage architecture, while incurring a lower area, since the area scalability process for the
internal combinational logic (e.g., the crossbar) is very effective. The area saved by the
multiswitch amounts to roughly 9%. Most of the extra area of the multistage comes from its
combinational logic (43% with respect to the multiswitch one). The second and the third
columns show respectively the area breakdown of combinational and sequential logics of both
switches at max performance. For high performance applications, the multiswitch VC results to
be the best choice since it is able to run at higher frequency than the multistage one. Moreover,
when the multiswitch is relaxed and runs at the same operative frequency of the multistage one,
it leads to save approximately 9% of the area.

5.3. Full bandwidth reservation
Circuit switching is easier to implement in our target GPPA than in standards NoCs because no
setup/teardown procedures are required: once a partition is configured, circuits inside that
partition can be automatically pre-configured as well, and run till completion of the partition.
Given the implementation mechanism of circuits we will propose, circuits can be
dynamically allocated or tore down at partition runtime exclusively by means of runtime
reconfigurations of the routing function (OSR-Lite based, in our case).

(a) (b)

Figure 42: (a) visibility of A, to which a circuit is reserved, vs. (b) visibility of the other nodes.

 42

Observing Figure 42 (a) and (b), the key philosophy we adopted to implement circuit
switching emerges, that is viewing reserved links and buffers in the same way as broken,
hence unusable components, except for the traffic flow which the circuit is dedicated to.
Viewing a circuit “as broken links” means that the connectivity bits of the adjacent switches are
set to zero, so they don’t consider the path through the circuit reserved resource in their routing
computation. Only the switch A can “view” the link as non-broken. In practice: packets issued by
A and heading to the destination served by the circuit, should be routed across the circuit. All
other packets, although heading to the same destination, should be routed elsewhere.
From an implementation standpoint, we get an overhead of 11 additional bits for each input
port, needed to expand the LBDR routing mechanism: if the destination the packet wants to
reach is the circuit destination (coded by the 11 bits), the routing logic forces the output port
expected by the circuit (coded by the 11 bits), else the packet is routed through other output
ports because the link is seen as broken.
8 bits are used to encode a destination address (4 for the y-axis coordinate and 4 for the x-axis
coordinate) and 3 bits to give the information about the output port the packet has to be sent (3
bits are enough because we are considering a 5x5 switch).
Please notice that, similarly to the case where a link or a switch sub-block is excluded from
routing paths because it is defective, also in this case the insertion of a circuit affects the routing
algorithm of the partition the circuit is inserted into. That is, routing paths should not go through
the reserved circuit. If the partition is created on top of idle resources, the algorithm will be
custom tailored to accommodate the circuit from the ground up. If a circuit is created at runtime
in a running partition, then the algorithm should be reconfigured through the OSR-Lite process.
Ultimately, this requires a selective modification of routing bits and connectivity bits, where
thanks to OSR these changes can be operated without draining network traffic. This brings to
the key novelty of the vIrtical approach: the establishment of a circuit at runtime is
equivalent to the runtime reconfiguration of the routing function.
In terms of architectural implications, circuit support impacts the virtual channel
architecture in Fig.41. In fact, circuits would be established across the input/output
connections of VC0 switches (those used for inter-cluster/intra-partition
communications). At the same time, corresponding inter-switch links would be reserved.
However, such links are shared with virtual channels for global traffic (VC1 and VC2),
which would experience blocking for the time of circuit reservation. To prevent this, the
solution is twofold:

- we may enforce runtime reconfiguration of the routing function of VC1 and VC2
as well, unlike Fig.41. This way, the link is seen as “broken” by all virtual
channels, which would then implement the suitable course of rerouting action.

- we may design two different networks: one for intra-partition communication (i.e.,
VC0 would become a separate network by adding inter-switch links), and one for
global traffic (which may still implement virtual channels for requests and
responses). This way, full bandwidth reservation on one network would not affect
the other network. At the same time, the global network would not need to
support runtime reconfiguration of its routing function, thus following the
philosophy of Fig.41.

5.3.1. Functional validation

To validate our implementation we propose the test in the figures below.

 43

 (a) (b) (c)
Figure 43: Runtime reconfiguration to enforce a circuit. (a) Master M1 is active and is transmitting

packets destined to slave connected to switch 3. (b) M0 starts to inject traffic with switch 7 as
destination, so routing algorithm routes this traffic through the path of traffic from M1. (c) After a
reconfiguration a circuit is enforced: traffic from M0 changes the routing path because it sees the

link as reserved.

We consider a runtime reconfiguration to enforce a circuit. As shown in Figure 43 (a) master M1
starts to inject traffic to slave connected to switch 3. Figure 43 (b) shows when also M0 starts to
inject traffic to slave 7 as destination: in this case the traffic is routed to the M1 traffic path and
so participates to a Round-Robin scheduling (no packets priority is specified) and the grant is
given in a circular way. After a runtime reconfiguration with the OSR-Lite mechanism, as shown
in Figure 43 (c), a circuit is created between switch 1 and switch 3 and so the link reserved to
M1 traffic because the other switches consider the link as reserved/broken (we set to zero
specific connectivity bits of LBDR-bits to mimic the fault). At the same time, through OSR
routing bits are selectively modified to accommodate the new routing paths resulting from the
exclusión of the reserved circuit for most cores.

 44

Figure 44: according to Figure 43 (a), (b), (c) we show in red the latency of M1 packets and in

blue/yellow the arrival time of packets from M1 with a runtime reconfiguration to create the circuit
and without the circuit.

The experimental results reported in Figure 44 show latency and arrival time of packets from
master M1. We note that in (a) latency is minimal and constant and also the gradient of the
arrival time curve, because there is only M1 injecting traffic. In (b), when also M0 starts to inject
traffic, the gradient and the latency increase because of the contention (to reach the south
output port in switch_1) between local port traffic (traffic from M1) and west port traffic (traffic
from M0). In (c), after a runtime global reconfiguration, obtained by OSR-Lite, the graph shows
a decrease of the gradient of the curve and a latency that returns to the level seen in (a)
because the instauration of the circuit allows packets from M1 to go directly to slave of switch 3,
without Round-Robin scheduling: the path is reserved by creating the circuit. Accordingly, the
traffic from M0 is routed through another path, because the link is seen as broken.
Noteworthy, the time needed by the reconfiguration to create a circuit is absorbed very soon
because the gradient of the curve decreases: in Figure 44 we can see in yellow the arrival time
if there is no reconfiguration. It mantains a higher gradient, because of the arbiter contention,
and intersects the blue curve, thus giving users the reference for convenient reconfiguration.

 45

5.4. QoS-aware Runtime Reconfiguration
We consider now the reconfiguration process. As the reader may recall from the OSR-Lite
mechanism, the reconfiguration process involves the whole network, and the whole traffic
running over it. A switch, waiting for the token arrival, stalls the new traffic and only when the
token arrives and gets forwarded through an output port, it proceeds to processing new packets
through that output port. So if there is running traffic, a switch is to some extent affected by the
reconfiguration process, though there are no changes to the configuration of its specified
LBDR_bits. This questions the possibility of meeting QoS constraints in an operational
environment where lots of runtime reconfigurations take place. To give an applicative
example, we consider the figure below.

Figure 45: running traffic in a partition "A" of the network, involved by a reconfiguration process

done to create another partition "B". Red arrows represent routing restrictions of the network

Figure 45 shows a 4x4 NoC where there is running traffic. In particular we consider a specified
partition (partition "A"), composed by switches 0,1,2,3, where master M0 is injecting traffic in a
continuous way to reach slave S3. If we want to create a new partition "B" (for example
including switch 8,11,14,15), launching a new OSR-Lite reconfiguration process also the
running traffic in the first partition will be affected to some extent. In principle, this should not be
required because nothing changes in the LBDR_bits configuration of the running partition "A".
Figure 46 shows how running traffic in partition "A" is affected by a global reconfiguration
process vs. an ideal local process to partition “B”. This is the result of an RTL-equivalent
SystemC simulation.

Figure 46: Running traffic in partition “A” involved by a global reconfiguration process (blue) vs
local reconfiguration process (red) upon new partition creation. The plot shows the arrival time of
packets to their destination. On the x-axis there is the packet identifier.

 46

We can clearly see that arrival times are affected in a very significant, although localized, way
because switches involved by the reconfiguration process have to wait for the token. In
particular the reconfiguration process impacts switch_0 for about 46ns (considering 1ns = clock
cycle).
The solution to this problem is local reconfiguration that, as we can see in Figure 46 (red
curve), does not affect the existing partition and its running traffic. Indeed, the reconfiguration in
this particular case should concern only switches of future partition "B" because it's here where
routing configuration bits change.
The mechanism behind local reconfiguration we implement in our network is very simple. We
give new LBDR_bits and LBDR_en (enable signal to inform the switch that LBDR configuration
is changing) only to switches involved by the new partition but at this point an evolution of
switch reconfiguration control logic becomes necessary since the token propagation must be
limited to the new partition area.
The figure below shows the logic behind the performed modification.

 (a)

(b)

Figure 47: improvements of logic behind (a) epoch_input, (b) epoch_output, to control token
propagation in case of local reconfiguration.

In Figure 47 (b) we consider the simple way of constraining token propagation. Simply,
considering epoch_out as the signal that represents the token propagating signal in the baseline
solution, now we filter it with an AND gate and Cbit signal, that represents the connectivity bit
that give the information about the presence of an active link between two interconnected
switches: effective_token_out signal goes high (effective_token_out = 1) only if epoch_out = 1
and Cbits = 1, so there is an effective token propagation only if there's a valid link that connects
the output port to another switch. In contrast, in a boundary switch, or when the output port is
toward a partition edge, the token propagation is blocked.
In Figure 47 (a), instead, we consider part of the OSR-Lite logic that controls epoch transition
for partition boundary switches. Considering switch_epoch the signal that goes high when the
LBDR enable is sent (i.e., new LBDR bits received from the control bus), the key idea is to mask
the token_in signal by an AND block with Cbits, and in the same way to filter switch_epoch with
the negation of Cbits. So if a token arrives (token_in = 1) and input port is linked to another
switch (Cbits = 1), the token passes. The OR block, instead, is useful to maintain the correct
behavior of the logic: if a token arrives from an active link or there is a pending reconfiguration
(LBDR_en enabled, so switch_epoch = 1) and the port has no connection (!Cbits = 1) the
effective_token_in signal goes high. So the switch port sees an effective token if there is a valid
token_in (from an active link) or if a reconfiguration is launched and the port is not actively
connected.
The conclusion of updates of epoch_input and epoch_output is that the token
propagation is effectively limited to the part of the network where we want to create a

 47

new partition: a non-valid token in input is not considered, a non-valid token in ouput is
absorbed by the partition edges, so local reconfiguration becomes possible.
These improvements allow also a local reconfiguration applied to an existing and running
partition, ensuring that will be limited to its switches. This can be the case of a change of routing
algorithm, of the dynamic setting of a circuit, of working around a faulty link. Local
reconfiguration for a running partition is more efficient than a global one, as shown in the
experimental test represented in figure below.

5.4.1. Functional validation

Figure 48: Running partition reconfiguration: running traffic involved by a global reconfiguration
process (orange) vs local reconfiguration process (green); arrival time of the packets to their
destination is showed.

Let us consider a scenario similar to Figure 45. If a new partition “B” is allocated, then with the
proposed approach traffic inside “A” is not impacted. Therefore, let us consider the more
interesting scenario where only partition A is running, and its routing function needs to be
changed at runtime via an OSR-Lite reconfiguration. Figure 48 shows how arrival times of
running packets in partition “A” are improved by reconfiguring the same running partition "A"
locally: if we set a global reconfiguration process, traffic blocking is correlated with the
reconfiguration of the whole network, while a local partition implies token propagation only
inside the partition under reconfiguration. In particular, traffic at switch_0 is stalled for about
12ns during local reconfiguration, as opposed to 46ns during global reconfiguration, highlighting
a very significative improvement of about 72%.

Considering the whole new outline, OSR-Lite allows not only global reconfiguration but it
is also useful to set intra-partion reconfigurations, necessary to bypass a broken link, to
create a circuit and to change the routing algorithm of a running and existing partition,
without affecting other partitions, and minimizing the reconfiguration transient.
Moreover it can be used to create new partitions from idle resources, too, in case of
loose synchronization with the software. In fact, assuming idle resources, there are two
options. On one hand, the network manager might configure the routing mechanism of the
network section involved by a new partition, and once finished trigger software execution on
partition IP cores. In this case, token propagation is not strictly needed, since there is no
ongoing traffic. On the other hand, there might be loose synchronization: IP cores try to inject
traffic regardless of the state of the network. This latter, in turn, will prevent such traffic injection
at its switches via backpressure until they progressively mígrate to the new epoch. In this case,
not all the switches start collecting packets at the same time. OSR-Lite would be the indirect
synchronization mechanism between network state and IP core execution in this scenario.

 48

5.4.2. Dual-network design for high-performance reconfiguration
Until now, referring to OSR-Lite reconfiguration, we considered every LBDR_en provided in a
synchronous way, i.e. at the same time for all the switches of the NoC. This was done since the
focus was on functional validation.
In this subsection we relax that assumption and consider a more realistic setting, where control
bits of the OSR-Lite reconfiguration process are brought by a dual network. Such a dual bus
may be another 2D mesh superimposed to the main one, however this would be too much of an
overhead. We more realistically envision a global ring topology connecting all the switches of
the main NoC in a row. A global GPPA manager is one node of the ring, and also closes it.
The interesting issue that we intend to address here is that the ring may connect the switches of
the main NoC based on different patterns. The issue to investigate is which of these patterns
best matches the token propagation pattern of the OSR-Lite mechanism.

(a) (b)

 (c) (d)

Figure 49: different paths to provide LBDR_en by dual-bus. (a),(b) are routing inefficient paths; (c),

(d) are layout aware paths. Green arrows show the starting point and the direction of each path.

As Figure 49 shows, we provide the OSR control bits to the switches using four different paths.
The yellow (a) and (b) paths are theoretically sound but in practice they end up in very
inefficient implementation. In fact, the return path of the link would be most probably multicycle
in 40nm technology (and below), due to the its long length. Pink paths (c) and (d) instead are
layout aware paths.
Figure 50 shows the experimental results measuring the global reconfiguration time of the
whole network (as though the whole network was a unique, global partition that gets
reconfigured on-the-fly), according to different paths proposed in Figure 49. Let us recall that
what changes in all cases is the order in which OSR control bits are fed to the switches of the
main NoC.

 49

Figure 50: reconfiguration time with dual networks of kinds (a), (b), (c), (d) of Figure 49,

compared and normalized with respect to the ideal, synchronous feeding of OSR control signals.

The best case is the synchronized one (75nsec considering a clock period of 1nsec), although
irrealistic. This would imply the possibility of inferring a single cycle one-to-many connection
between the global manager and all network switches. Yellow path (a) turns out to be the most
efficient one, since it tries to match as much as possible the token propagation pattern across
the network. This pattern is especially convenient for top left partitions, since LBDR_en signal
that causes a new_epoch arrives closest to the arrival of all the token_in signals for those
switches: new_epoch packets are stopped for a smaller time. In case yellow path (a) could not
be physically implemented, then pink path (c) is the closest to it, both from a shape and hence
from a performance viewpoint.

 50

6. Conclusions

To optimize performance, predictability, and energy efficient operation of virtualized
heterogeneous multicore systems for dynamic application workloads, new runtime techniques
are required based on monitoring components deployed at critical system locations. This report
describes a set of hardware monitoring components developed for a heterogeneous SoC
architecture which enable the synergistic hardware and software extensions for dynamic system
adaptation.

Innovative hardware-level enhancements and corresponding design methodologies at different
system layers can advance virtualization technology by alleviating software overheads, leading
to sophisticated hypervisor enhancements supporting not only basic global shared address
translation, but also runtime system monitoring and control, dynamic power management,
shareability, system-wide cache coherence and a well-defined memory consistency model,
thereby ultimately exploiting the high performance capabilities of the underlying physical layer.

In addition to monitoring services, partitioning and reconfiguration support has been also
reported. By partitioning, the hypervisor will be able to assign different sets of GPPA resources
to running applications, thus providing the required isolation effect of a virtualized system. Also,
runtime reconfiguration has been reported, in which the underlying NoC of the GPPA will be
reconfigured with minimal impact on running applications.

Finally, this deliverable has reported on the successful development of a soft QoS package,
including packet-level, and traffic flow-level QoS guarantees, up to the reservation of circuits.
QoS provisions have been specifically conceived for the GPPA of the system. Packet-level
provisions consider the differentitation of traffic types in the network, but also the specific
requirements of control signaling or the traffic imbalances naturally found in topologies, thus
justifying a priority ranking. Within the same priority class, round robin is arbitration is preserved.
Also, conflicts between traffic to L2 and intra-partition traffic is limited to NoC links only by
means of virtual channels, that at the same type deliver maximum link bandwidth exploitation.
Finally, the synergy between the NoC architecture and the centralized software controller
enables the reservation of circuits in the network without suffering from the overhead for path
setup and teardown. Bandwidth reservation ends up being very similar to traffic rerouting
around a faulty link. Finally, the interdependencies between runtime network reconfiguration
and delivery of QoS over time has been considered. In this direction, local reconfiguration
schemes are proposed, that tweak the token propagation mechanism of OSR-Lite. Also, the
most suitable ring topology patterns are analysed to best match the token propagation pattern in
the main network of the OSR-Lite runtime reconfiguration mechanism.

 51

References

[1] R.Das, O. Mutlu, T. Moscibroda, C.R. Ras, “AE´RGIA: A Network-on-chip Exploiting

Packet Latency Slack”, Micro, 2011, pp. 2-14
[2] L. Tedesco, F. Clermidy, and F. Moraes, “A monitoring and adaptive routing mechanism

for QoS traffic on mesh NoC architectures.” In CODES+ISSS, 2009, pp. 109–118.
[3] F. Moraes, N. Calazans, A. Mello, L. M¨oller, and L. Ost, “Hermes: an infrastructure for

low area overhead packet-switching networks on chip,” Integr. VLSI J., vol. 38, pp. 69–
93, October 2004.

[4] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, H. Tenhunen, “Memory-Efficient
On-Chip Network with Adaptive Interfaces”, IEEE Trans. On Comp.-Aid. Des. of Integ.
Circ. and Syst., vol. 31, no. 1, Jan 2012, pp. 146-159.

[5] G. Kornaros, I. Papaefstathiou, A. Nikologiannis, N. Zervos, “A fully-programmable
memory management system optimizing queue handling at multi gigabit rates”,
Proceedings of the 40th annual Design Automation Conference, 2003, pp 54-59

[6] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory access
scheduling,” in Proc. ISCA, 2000, pp. 128–138.

[7] F. Qin, C. Wang, Z. Li, H. seop Kim, Y. Zhou, and Y. Wu, “Lift: A low-overhead practical
information flow tracking system for detecting security attacks”, In MICRO 39, pp 135-
148, 2006

[8] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic binary
instrumentation”, In PLDI, pp 89-100, 2007.

[9] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure for adaptive dynamic
optimization”, In CGO, pp 265-275. IEEE Computer Society, 2003.

[10] M. A. Al Faruque, R. Krist, J. Henkel, “ADAM: run-time agent-based distributed
application mapping for on-chip communication”, In Proceedings of the 45th annual
Design Automation Conference, DAC ’08, 760–765, 2008

[11] O. Lysne, J. Montanana, J. Flich, J. Duato, T. Pinkston, and T. Skeie, ``An efficient and
deadlock-free network reconfiguration protocol,'' IEEE Transactions of Computers, vol.
57, no. 6, pp. 762--779, 2008.

[12] W. Dally, L. Dennison, D. Harris, K. Kan, and T. Xanthopoulus, ``The reliable router: A
reliable and high-performance communication substrate for parallel computers,'' in
Proceedings of the Workshop on Parallel Computer Routing and Communication
(PCRCW), May 1994, pp. 241--255.

[13] C. Glass and L. Ni, ``Fault-tolerant wormhole routing in meshes without virtual
channels,'' IEEE Transactions Parallel and Distributed Systems}, vol.7, no.~6, 1996.

[14] M. Gómez, J. Duato, J. Flich, P. López, A. Robles, N. Nordbotten, O. Lysne, and
T.~Skeie, ``An efficient fault-tolerant routing methodology for meshes and tori,''
Computer Architecture Letters}, vol. 3, no. 1, pp. 3--3, January-December 2004.

[15] C.-T. Ho and L. Stockmeyer, ``A new approach to fault-tolerant wormhole routing for
mesh-connected parallel computers,'' IEEE Transactions on Computers, vol. 53, no. 4,
pp. 427--439, 2004.

[16] K. M. et al., ``Fibre channel switch fabric-2 (fc-sw-2),'' NCITS 321-200x T11/Project
1305-D/Rev 4. 3 Specification, Tech. Rep., March 2000.

[17] M. Schroeder, A. Birrell, M. Burrows, H. Murray, R. Needham, T. Rodeheffer, E.
Satterthwaite, and C. Thacker, ``Autonet: a high-speed, self-configuring local area
network using point-to-point links,'' IEEE Journal on Selected Areas in
Communicartions, vol. 9, no. 8, pp. 1318--1335, October 1991.

[18] R. Casado, A. Berm\'udez, , J. Duato, F. Quiles, and J. S\'anchez, ``A protocol for
deadlock-free dynamic reconfiguration in high-speed local area networks,'' IEEE
Transactions on Parallel and Distributed Systems, vol. 12, no. 2, pp. 115--132, February
2001.

[19] O. Lysne and J. Duato, ``Fast dynamic reconfiguration in irregular networks,'' in
Proceedings of the 2000 International Conference of Parallel Processing (ICPP).

[20] T. Pinkston, R. Pang, and J. Duato, ``Deadlock-free dynamic reconfiguration schemes
for increased network dependability,'' IEEE Transactions on Parallel and Distributed
Systems, vol. 14, no. 8, pp. 780--794, 2003.

 52

[21] J. Duato, O. Lysne, R. Pang, and T. Pinkston, ``Part I: A theory for deadlock-free
dynamic network reconfiguration,'' IEEE Transactions on Parallel and Distributed
Systems, vol. 16, no. 5, pp. 412--427, May 2005.

[22] O. Lysne, T. Pinkston, and J. Duato, ``Part II: A methodology for developing deadlock-
free dynamic network reconfiguration processes,'' IEEE Transactions on Parallel and
Distributed Systems, vol. 16, no. 5, pp. 428--443, May 2005.

[23] D. Avresky and N. Natchev, ``Dynamic reconfiguration in computer clusters with
irregular topologies in the presence of multiple node and link failures,'' IEEE
Transactions Computers, vol. 54, no. 5, pp. 603--615, May 2005.

[24] J. Acosta and D. Avresky, ``Intelligent dynamic network reconfiguration,'' in Proceedings
of the 21st International Parallel and Distributed Processing Symposium (IPDPS)

[25] D. Fick, A. DeOrio, J.H., V. Bertacco, D. Blaauw, and D. Sylvester, ``Vicis: A reliable
network for unreliable silicon,'' in Proceedings of the 46th Design Automation
Conference (DAC), July 2009, pp. 812--817.

[26] C. Feng, Z. Lu, A. Jantsch, J. Li, and M. Zhang, ``A reconfigurable fault-tolerant
deflection routing algorithm based on reinforcement learning for Network-on-Chip,'' in
Proceedings of the International Workshop on Network on Chip Architectures (NocArc),
2010.

[27] Z. Zhang, A. Greiner, and S. Taktak, ``A reconfigurable routing algorithm for a fault-
tolerant 2D-mesh Network-on-Chip,'' in Proceedings of the 46th Design Automation
Conference (DAC)

[28] V. Puente, J. Gregorio, F. Vallejo, and R. Beivide, ``Immunet: A cheap and robust fault-
tolerant packet routing mechanism,'' in Proceedings of the 31th Annual International
Symposium on Computer Architecture (ISCA).

[29] J. Flich, A. Mejia, P. Lopez, and J. Duato, ``Region-based routing: An efficient routing
mechanism to tackle unreliable hardware in network on chips,'' in Proceedings of the
First International Symposium on Networks-on-Chip, ser. NOCS '07.

[30] K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacco, ``Ariadne: Agnostic reconfiguration
in a disconnected network environment,'' in Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques (PACT), 2011.

[31] A. Ghiribaldi, D. Ludivici, F. Trivi\v{n]o, A. Strano, J. Flich, J. Sánchez, F. Alfaro, M.
Favalli, and D. Bertozzi, ``A complete self-testing and self-configuring noc infrastructure
for cost-effective MPSoCs,'' ACM Transactions on Embedded Computing Systems,
2011.

[32] S. Stergiou et al., ``Xpipes lite: a synthesis oriented design library for networks on
chips,'' in DAC, 2005.

[33] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho, F. Silla, and J.
Duato, ``Addressing manufacturing challenges with cost-efficient fault tolerant routing,''
in Proceedings of the 2010 Fourth ACM/IEEE International Symposium on Networks-
on-Chip, ser. NOCS '10.

[34] A. Mejia, J. Flich, and J. Duato, ``On the potentials of segment-based routing for nocs,''
in Parallel Processing, 2008. ICPP '08. 37th International Conference on, sept. 2008,
pp. 594 --603.

[35] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, A. Moestedt, and B. Werner, ``Simics: A Full System Simulation Platform,''
Computer, vol. 35, no. 2, pp. 50--58, 2002.

[36] M. M. K. Martin, et al. , ``Multifacet's general execution-driven multiprocessor simulator
(GEMS) toolset,'' SIGARCH Comput. Archit. News, vol. 33, no. 4, pp. 92--99, 2005.

[37] C. Bienia and K. Li, ``Parsec 2.0: A new benchmark suite for chip-multiprocessors,'' in
Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simulation,
June 2009.

[38] F. Gilabert, M. E. Gómez, S. Medardoni, and D. Bertozzi, ``Improved utilization of noc
channel bandwidth by switch replication for cost-effective multi-processor systems-on-
chip,'' in Fourth ACM/IEEE International Symposium on Networks-on-Chip, 2010, pp.
165--172.

