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Abstract 
This deliverable describes the key hardware extensions for embedded system virtualization. Such 
extensions are runtime programmable, thus augmenting the hardware platform with the needed flexibility 
and dynamism that a virtualized environment requires. The hardware extensions include a monitoring 
facility and a reconfiguration facility, which will be thoroughly illustrated throughout this deliverable. One 
one hand, hardware primitives will form the monitoring facilities towards dynamic observation and 
management of a heterogeneous SOC target architecture. In WP3, they will assist the system software 
(OS and hypervisor) in the configuration of the embedded hardware in the best appropriate way to 
maximize performance of applications and user experience. On the other hand, this deliverable details 
the hardware support for the effective virtualization of the GPPA. To achieve such property, we report on 
the partitioning support at network-on-chip level, while at the same time achieving partition isolation, on a 
runtime reconfiguration strategy that yields flexible partitioning while avoiding deadlock, and the on a 
soft-QoS package at packet and flow level. Above all, the smooth integration between the partitioning, 
reconfiguration and QoS features is addressed. Hardware-level partitioning will also provide means to 
find a balance between performance, safety, and security for system integrator. While this document 
focuses on algorithms which are implemented at the HW level, the configuration and run-time API to the 
OS/hypervisor/applications will be defined in WP2 and WP3. 

. 
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Glossary 
DMA - Direct Memory Access 

DRM - Digital Rights Movement 

DVM - Virtual Memory Management 

GPPA – General Purpose Programmable Accelerator 

KVM - Linux Kernel Virtual Machine 

LBDR – Logic-Based Distributed Routing 

NoC - Network-on-Chip 

SoC - System-on-Chip 

VM - Virtual Machine 

VMM - Virtual Machine Monitor 

VP - Virtual Platform 

VC – Virtual Channel 
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1. Introduction 
 

Within the EU/ICT Collaborative Project vIrtical - workpackage WP4, the current deliverable describes 
synergistic hardware extensions involving monitoring components and techniques necessary to support 
efficiently not only existing processor virtualization, but also hardware-assisted full virtualization towards a 
heterogeneous SoC target architecture.  

The proposed heterogeneous multicore system platform follows a trend towards convergence of high-end 
embedded systems and general purpose platforms for nomadic computing. Thus, programmable 
accelerators coexisting with ARM SMP multicore hosts are able to achieve the required energy efficiency 
(MOPS/mm/W) for embedded devices. Hardware-level enhancements advance virtualization technology by 
alleviating software overheads, ultimately exploiting the high performance capabilities of the underlying 
physical layer. At the same time a heterogenous multicore platform is inherently complex with a multitude of 
different subsystems that need careful tuning and runtime management. 

In this deliverable we pursue the hardware extensions required to support virtualization in the 
architectural template of the project. Four main directions are taken: Monitoring facilities, 
partitioning support, runtime non-intrusive reconfiguration, and QoS provisions, in addition to the 
co-design and co-optimization of the three latter features, since they actually determine and change 
the operating mode of the embedded system device 

Monitoring support. Given the additional dynamic information, decisions at system level can become more 
intelligent and achieve better performance and adaptivity. We address the use of a distributed infrastructure 
to monitor the state and dynamics of the system and provide feedback to the runtime environment (OS and 
hypervisor) and possibly to the application.  

Based on the additional monitoring information available, decisions at system level can become more 
intelligent and achieve better operational characteristics and adaptability. Runtime monitoring support serves 
as a basis for the important tasks of providing security, performing debugging and improving performance of 
executing programs [7] [8] [9] . In general, monitoring management refers to the ability to track a number of 
events so as to offer better insight into the system’s resource usage and into the behavior of applications at 
the same time. On top, the monitoring information that can be obtained and refers to the effectiveness of the 
different components in the system at a specific time interval can guide dynamic decisions of the operating 
system and of the hypervisor. Representative system responses could be frequency throttling, voltage 
reduction or resource reconfiguration depending on the exact nature of the deviation from expected system 
operation. 

In a virtualized environment, multiple OS instances are involved, namely the hypervisor (VMM) and the 
guest(s). One of the hypervisor roles involves scheduling processor and system resource access to virtual 
machines as they need them. Apparently, with multiple VMs running on a single system, the virtual machines 
that aren't actively serviced by the hypervisor actually enter a type of wait state until their next turn. Hence, 
effective management of resources can result in optimized utilization and performance. 
	
  
The objective of a monitoring scheme is to view how many resources those virtual machines (VMs) are 
consuming inside a virtual host or at the system level. However, besides processor’s utilization in a 
heterogeneous multi-core system monitoring is required across all activities being done on the system. The 
deliverable details newly proposed subsystem components for monitoring NoC-based heterogeneous 
system and in particular the network interface infrastructure and memory controllers. 

Partitioning support and reconfiguration. In addition, partitioning support and reconfiguration is reported 
in this deliverable. Partitioning support aims at defining sets of resources and isolating them at the NoC-level 
from the other partitions. This is a requirement to guarantee no influence between the accelerated sections 
of running applications. In this report we show the hardware support that delivers partition definition and 
isolation in the GPPA of the target heterogeneous SoC architecture. As a relevant contribution, such support 
is developed on top of a logic-based distributed routing mechanism, which better matches technology and 
scalability requirements than table-based routing. The devised solution builds up a routing framework that 
leaves many degrees of freedom for the end designer concerning the choice of specific routing algorithms, 
partition shapes, and number of virtual channels. Of course, such choices are tightly interrelated, therefore 
the deliverable will propose a few relevant global architecture solutions that the designer can choose from. 
Also, this deliverable reports on a runtime reconfiguration protocol and its optimized implementation for an 
on-chip setting. The implemented protocol avoids deadlock during the reconfiguration process of the network 
routing function, and also aims at minimum intrusion on running traffic and mapped applications on the 
GPPA resources. 
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QoS. One of the key features for effective virtualization in embedded systems is that of providing APIs to 
application developers in both the open and embedded virtualized environment to allow them to negotiate 
with the hypervisor in terms of QoS/SLA. While such programming model implications will be investigated in 
WP2 (D2.1), this deliverable reports on the suitable hardware extensions in the GPPA to effectively support 
the QoS framework. In this deliverable, we aim straigth for a soft-QoS package, complemented by on-
demand circuit switching whenever tighter guarantees are needed. 
 
It should be observed that QoS not only concerns application-perceived performance metrics, but is a good-
to-have feature even for platform management. In fact, vertical hardware/software exchange of monitoring 
information and/or configuration commands requires a suitable service level discriminating this kind of 
control traffic with respect to typical data and instruction traffic. As a main innovation with respect to state-of-
the-art QoS NoC frameworks, vIrtical fosters two main approaches:  
 

1- QoS for NoCs is impractically implemented in hardware only, due to the large and hard-to determine 
number of possible use cases at run-time. A proper mix of hardware facilities and software controlled 
management policies is vital to achieving efficient results. In this direction, vIrtical is able to deliver 
circuit switching in specific network segments without incurring the burden of setting up or tearing 
down circuits.   

2- In this project we are going to offer runtime QoS differentiated services by leveraging runtime 
reconfiguration of the NoC backbone. It is worth observing that virtualization and QoS are two tightly 
interrelated requirements for embedded systems. In this direction, the extension framework of NoCs 
for QoS will be synergic with the routing mechanism extensions for network partitioning and isolation 
illustrated above. 

 
Overall, while this document focuses on algorithms and primitives which are implemented at the HW level, 
the configuration and run-time API to the OS/hypervisor/applications will be defined in WP2 and WP3 
(deliverables D2.1 and D3.1). 
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2. Hardware hooks for monitoring at system-level 
In the scope of enhancing monitoring at system-level in VIRTICAL, a monitoring infrastructure is developed 
to provide efficient hardware primitives operating in a distributed fashion while facilitating dynamic measuring 
of metrics of interest and management of system resources. The monitor agents include counter-based 
blocks that capture configured events. Their contents may be set and read by software and used to analyze 
and optimize the performance and power consumption of the entire system. System-level metrics such as 
read or write data throughput, interconnect read latency can be computed by obtaining all metrics after 
selecting the agents of interest in the system. 
 
The design of the monitoring subsystem involves a number of tradeoffs from architectural point of view, 
including communication protocols and software interfacing, as well interaction and interoperability; as such, 
the design must be performed in concert with the design of main multicore SoC resources. Collected real-
time monitor information can involve substantial amounts of non-critical data (i.e., performance statistics, 
throughput, and jitter) that may require separate system resources to transfer and process them. On the 
other hand critical monitor information, such as power and temperature or soft-error failures require 
instantaneous attention at system level. At the same time system dependability is increasingly important in 
the face of numerous environmental and process-related variability that can affect operation and 
performance of modern complex SoCs; for instance these cover unexpected voltage drops in the power 
supply network, temperature fluctuations, process variations (gate length and doping concentration), and 
cross-coupling noise. 

2.1. Monitoring Primitives in Hardware 
Counter-based monitoring units comprise the primary components for collecting system events and 
maintaining statistics for performance optimization. Two main methods are integrated to retrieve monitor 
information: i) event-driven sampling that relies on interrupt notification when counter overflow happens, and 
ii) time-driven sampling where periodically the monitor manager collects monitor statistics. The following 
components are developed to facilitate accounting of various events. 

• Event counters: Currently single 32-bit counters are used to accumulate the captured events and are 
programmable in order to be controlled by the software running on the manager of monitor 
components or on the processors itself. The layout of an event counter is depicted next. 

 
Overflow Flag Counter Value [31:0] 
Set when 
wrap-around 
occurs 

Number of events. The trigger condition is set by the 
associated control register. Each event can be qualified by a 
filter register. 

 
The control register of each event counter contains the following fields: 

 
Software Reset (bit [0]): a write sets the event counter to zero 
Counter Enable (bit [1]): when set counting is enabled, otherwise the counter is frozen 
Interrupt Enable (bit [2]): when set the counter causes an interrupt when overflow occurs; reading 

the value of the counter causes the interrupt to deassert 
Counter Trigger (bits [7:4]): allows any of the four triggers to increment the counter when 

 asserted 
Privilege Level (bit [9:8]): determines the privilege level of the counter manager in order to protect it 

from unauthorized access 
 

• Free-running timers: These timers increment at processor or sub-system clock rate. Timestamps can 
be enabled tomark the timing of captured events related to a free-running timer that operates as a 
wall-clock reference. Additionally, it is useful to obtain events from different clock domains 
associated with a local timestamp when insight is needed at a block level. However, currently we opt 
for a centralized counter/clock to avoid distributed time consensus issues. A tuple {timestamp, event} 
forms an event-time structure. 

 
• Event Filter: A monitor filter commonly is build on the basis of a masking operation that applies on 

the captured sample in order to isolate the field of interest. The developed multi-filter unit mainly 
consists of three masks which are user programmable. The following figure shows the signal 
vectors/inputs Vdata and Vtrigger that comprise the data bus to monitor and the signal to trigger the 
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sampling of this data bus. The masks can be optionally programmed by the user software and 
specify which part of the Vdata and Vtrigger is desired to be qualified. 

 

 
Figure 1: Structure of a single programmable monitor Event Filter; vector inputs Vdata and Vtrigger 
are specified by the designer at configuration time, while Vmask and Vpattern are programmable at 
run-time 

 
• Statistic Counter – Moving Average: Consists of a counter with associated logic in order to manage 

an input stream of events (x) indexed by time (e.g. xt is the value of x at time t), or counter values, 
while a new piece of data is received in a sliding window time interval measured in clock cycles. 
Hence, for a sliding window of eight entries the computations needed are an addition and one 
subtraction: 

 Sumt+1 = Sumt - xt-8+xt 
 Avgt = sumt/8 

To implement this hardware structure a circular buffer is configured with eight entries (the size is 
configurable at design-time). 

 
• Switching Activity Counter: besides the counter this unit includes a circuit to compute the number of 

bit transitions in order to provide support for energy monitoring. A coarse-grain activity measurement 
can be based on accounting of traffic through counting number of packets. This particular switching 
activity circuit offers very fine-grain metrics. 

 
• A system-level block featuring multi-counter-based measurement units is architected in slices, 

providing a scalable solution in order to accommodate for capturing an extended number of events. 
On the other hand, the reduction of utilized slices can amortize the cost in terms of area and energy 
consumption. The developed infrastructure follows a middle ground approach by employing a shared 
control and interface glue logic that does not provides the ultimate performance but caters for the 
needs of medium multicore SoCs. 

The developed monitoring structure is developed to operate in dual mode. The horizontal shadowed 
slice depicts the basic unit circuit, which includes a first level filtering, an equality full or partial 
comparison stage and final recording in the counter unit; the process is activated by event 
generation as indicated by event trigger case A. Alternatively, the left part of the slice can be utilized 
as a filter stage to access the counters, while the counters can work independently and log 
preconfigured events; the vertical shadowed rectangle indicate the counters activated by event 
generation (case B). The partitioning and modularity of this scheme allows for protection against 
illegal accesses. 
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2.2. NoC Monitoring 
In the context of integrating monitoring capabilities for the system NoC in VIRTICAL, one of the primary 
objectives is to develop advanced monitoring components in close synergy with network interfaces bringing 
a dynamic nature to these. Real-time collected statistics can assist, first, in optimizing provided QoS levels in 
terms of latency, throughput and jitter. Hypervisor and host’s applications can provide improved resource 
management with the aid of run-time metrics such as throughput or packets slack. A packet’s slack is the 
number of cycles the packet can be delayed in the network without affecting the application’s execution time 
[1] . Second, based on run-time estimated metrics the system can adapt and improve the utilization of 
network resources and corresponding energy consumption through employing various reaction policies. By 
means of discovering potential congestion, adaptive routing mechanisms, such as those demonstrated in [2] 
, can be applied to support QoS traffic. Dynamic allocation of virtual channels and or queuing buffers, DVFS 
mechanisms, throttling and policing of packet injection rates are yet different alternatives to control NoC 
resources. 

The developed monitoring probes provide an easy, fast and efficient infrastructure to jointly monitor NoC-
based system resources and software applications running on top, and a seamless integration of the 
hardware monitor agents with the underlying NoC infrastructure in a non-invasive way. 

Methodology 
Monitoring a NoC infrastructure involves mainly two important aspects. In the viewpoint of supporting high-
performance communication services, and particularly supporting guaranteed quality of service, the 
monitoring policies should be tailored to impose negligible interference to the system and its 
performance/latency characteristics. The second aspect of monitoring involves the location and amount of 
monitor information that needs to be maintained. 

Monitoring mechanisms usually are required to provide throughput and latency statistics. In order to identify 
end-to-end events, such as request-replies in a NoC and corresponding latency or turnaround time mainly 
two techniques can be utilized. Packets are either tagged with timestamps and potentially with additional 
information, such as a network interface (NI) identifier and a sequence number, or new separate monitor 
packets are generated to provide similar information to the monitor at the destination NI. Both techniques are 
intrusive. It is essential that the monitor resources should be kept at a minimum to achieve low overhead. 

The developed monitoring solutions are designed to differentiate in order to be employed on the basis of 
systems’ constraints and requirements as follows: 

• maintain monitor information locally (applied for statistic counters, and only if the sharing degree is 
low, i.e. if many processor threads desire to access these counters could cause potential traffic 
overloads) 

• maintain monitor information in shared memory (appropriate for large amounts of traces through the 
monitor probes and if the sharing degree is high) 

The developed monitor primitives can be utilized in various contexts at system level as we describe next. 

Figure 2: Organization of the multi-counter block Monitor 
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Monitoring for Throughput accounting 
One important metric that evaluates the quality of a network-on-chip is throughput. Bandwidth indicates the 
amount of data that can be put on the network in a given amount of time. The monitors that we designed can 
be spread over a NoC infrastructure to measure various variables that can be exploited to characterize the 
traffic over particular physical or virtual partitions of the NoC.  

In particular, the developed counters are designed as performance counters to capture the number of 
packets departing a router in a predefined and programmable time interval and additionally can be employed 
to measure the buffer occupancy inside each router, so as to determine its level of congestion. 

Furthermore, multiple performance counters can be integrated for a single router, or a network interface to 
address differentiation of the various traffic flows. Trading area overheads for supported counters per router 
challenges the use of block counters (with a lower granularity or sampling rate thereof). 

Monitoring for Latency accounting 
Latency is a difficult comparison criterion, because it depends on many application-specific factors. 
Depending on the application or the criticallity of a guest, minimum latency on a few critical paths can be 
more important to measure and ensure via particular policies than statistical latency over the entire traffic 
flows. The overall system–level SoC performance usually depends only on a few latency-sensitive data flows 
such as processor cache refills, while for most other flows only achievable bandwidth will matter. But even 
for the latter dataflows, latency does matter in the sense that high average latencies require intermediate 
storage buffers to maintain throughput, potentially leading to area overhead. 

Latency can be measured as the round-trip delay of a read or write request performed by a master core. This 
can be done in software by the core itself, or by a monitor component in hardware. However, this entails the 
maintenance of a possibly large number of entries in a queue since a master can initiate multiple requests. 
We opted for distributed monitors that capture the latency of a packet as determined by the clock cycles form 
the time that the packet enters a router until the time that its first word departs from the same router. This 
difference is marked in the packet itself and is updated at each hop inside the netowrk-on-chip. Thus, when it 
finally exits the NoC a local monitor extracts the accumulated latency. 

 

2.3. Monitoring RTL Implementation Results 
The developed monitor hardware components are implemented in VHDL at Register Transfer Level and 
verified in an FPGA prototype to prove their feasibility and gain insight on the incurred cost. 

Table 1 summarizes the implementation cost of indicative monitor configurations using a Virtex-4 
VFX20ff672-10 device; the area of a MicroBlaze baseline core without local memory controllers or instruction 
and data caches is also depicted for comparison. Unless we integrate complex functions in hardware, such 
as compression or classification of events, the cost of integrating even multiple monitors with filtering 
capabilities is negligible. 

 

Device	
  Implementation	
  cost	
  of	
  hardware	
  monitor	
  units	
   	
  

Block	
   Slices	
   RAMBs	
   Frequency	
  

MicroBlaze	
  core	
  v.7.30	
   1240	
   134	
   125	
  

Counter	
  with	
  Event	
  Filters	
   332	
   3	
   297	
  

Switching	
  Activity	
  counter	
   148	
   	
   387	
  
	
  

The implementation results of the block counters for a Virtex4 xc4vfx20-11ff672 device are summarized next. 

Device	
  Utilization	
  Summary	
  (estimated	
  values)	
   	
  

Logic	
  Utilization	
   Used	
   Available	
   Utilization	
  

Number	
  of	
  Slices	
   412	
   8544	
   4%	
  

Number	
  of	
  Slice	
  Flip	
  Flops	
   612	
   17088	
   3%	
  

Number	
  of	
  4	
  input	
  LUTs	
   549	
   17088	
   3%	
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Number	
  of	
  FIFO16/RAMB16s	
   2	
   68	
   2%	
  

Performance	
  Summary	
   	
  

Minimum period:	
   3.232ns	
   Maximum Frequency:	
   309.406MHz	
  

 

2.4. Monitoring RTL implementation validation at system-level 
 
The developed hardware components are implemented in VHDL at Register Transfer Level and verified in 
an FPGA prototype to prove their feasibility and gain insight on the incurred cost. We have integrated our 
monitor models with the Hermes NoC [3] . This allows for direct validation and calibration of our monitor 
components. By deploying Hermes NoC, we have designed several different candidate NoC configurations 
and compared our monitor simulation estimates for these architectures with the real measurements. We 
investigate monitoring for two synthetic applications mapped on a four-by-four creditbased NoC. The packets 
consist of sixteen flits and the router buffers are matched to store sixteen flits. As figure 3 shows, four shared 
memories are connected at leaf nodes R00-R30, while each application consists of different traffic 
generators and occupies four tiles. Each traffic generator generates memory requests following exponential 
distributions, which range from 300 to 800 Mbps. Both applications access the shared memories using the 
NoC’s XY-routing protocol, thus causing link sharing as well. 

 
Figure 3: Traffic generation applications mapped onto two sets of cores and accessing the shared 
memories. The monitors capture latency for the two applications using the centralized monitor unit 

The distributed monitors capture latency effects, which is a special field tagged inside each packet. The 
monitor is triggered when the latency exceeds fifty clock cycles, and notifies a hardware centralized manager 
when a critical threshold of one hundred clock cycles is surpassed. The type of application Ta (or identifier of 
VM is used interchangeably), the event type Te and the source node Sij form the tuple request {Ta,Te,Sij} 
are sent to the centralized event monitor.  

One option is to employ time multiplexing of architectural event sampling to obtain all the values needed for 
latency calculation. We used point-to-point links to transfer monitor information to the monitor manager. 

In this scenario only latency events are recorded, and additionally the interface of the centralized monitor 
combines incoming requests through “OR” operations. Hence, the tuple needs ten bits in total (two for the 
application and eight for the cores), while we could also include the monitor identifier in order to identify the 
congested memory block instead, or additionally to the source core. Figure 4 depicts the simulation results 
captured from the monitors for the generated traffic scenario. The middle graph of each scenario case 
depicts the events handled by the centralized monitor component as reported by the real prototype system. 
Finally, the bottom graph demonstrates the latency measured at the centralized monitor, including combining 
operation, incoming FIFO latency, recording in the internal context addressable memory and service delay. 

Overall, the average delay achieved by the hardware monitors is almost fifteen clock cycles, including 
capturing, selection and transmission of the identified event. This clearly demonstrates the benefits of using 
our architecture in a multi-way high speed classification of monitor events. 
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Figure 4:  Latency captured by monitors for transaction across a 4×4 NoC to shared memories and 
monitoring latency for the two applications while using the centralized monitor unit 

Through	
  the	
  usage	
  of	
   the	
  monitoring	
  block	
  counters	
  described	
   in	
  this	
  section	
  the	
   latency	
  for	
  each	
  core	
  or	
  task	
  
can	
  be	
  identified	
  and	
  maintained	
  separately.	
  Then,	
  as	
  proposed	
  by	
  Al	
  Faruque	
  [9]	
  	
  task	
  mapping	
  algorithms	
  can	
  
be	
  applied	
  to	
  optimize	
  energy-­‐performance	
  metrics,	
  which	
  is	
  nevertheless	
  out	
  of	
  the	
  scope	
  of	
  this	
  report.	
  
	
  
	
  
	
  

Synthetic traffic scenario #1 

Synthetic traffic scenario #2 
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3. Partitioning Support 

3.1. Preliminaries 
One key aspect for the virtualization support aimed in vIrtical, is the possibility to provide partitioning support 
inside the GPPA. Multiple applications will be running on top of the system and the resources of the GPPA 
need to be partitioned in space in order to provide a perfect isolation of the communicating traffic between 
different application domains. Figure 5.a shows the case where four applications are using the GPPA 
resources without a partitioning support. Nodes with the same collor are assigned to the same application. 
As can be observed, the traffic generated by different applications collides in the NoC of the GPPA as the 
NoC paths are shared between nodes assigned to different applications.  

 

    

 

 

 

 

 

 (a) mixed application                  (b) smart allocation        (c) low utilization 

Figure 5. Application resources in GPPA lead to traffic collisions between applications. 

Also, even if nodes are assigned smartly to applications, trying to avoid traffic conflicts, we can either come 
up with a conflicting case or with subobtimal assignment and low GPPA resource utilization. This is the case 
shown both in Figure 5.b and Figure 5.c, respectively. In both figures, the NoC uses the XY routing algorithm 
(messages are enforced to take X direction and then Y direction only) to avoid network deadlocks. In Figure 
5.b we can see one partition is assigned 4 nodes wheras the other has the remaining nodes (12). The 
second partition will use XY routing and thus will have some communicating nodes with traffic crossing the 
other application domain. In Figure 5.c, to prevent the previous case the only mapped application is the first 
one, thus loosing GPPA resource utilization and affecting overall system performance. 

In vIrtical we apply the LBDR routing concept inside the GPPA, combined with a proper instantiation of the 
mechanism to support efficient partitioning of the resources. LBDR has been previously designed in the 
framework of the NaNoC project and aims at providing an scalable implementation of most deterministic 
routing algorithms for NoCs. It is based on three routing bits and one connectivity bit per output port of each 
NoC switch. The routing bits tell the switch whether messages can cross that link and then take the next one 
(three possible) at the next switch. Basically, those bits encode the so-called routing restrictions (the 
complement of routing restrictions, indeed). With the connectivity bit the logic only knows whether the output 
port exists or not. Figure 6 shows the switch IDs and the routing restrictions and the LBDR configuration bits 
for the case. In this case, the routing algorithm implemented in LBDR is XY. 

As an example of routing bit, the bit Rne defined for switch 5 is set as 0. This means no message can be 
forwarded through the north port and at the next switch take the east port. As can be seen, there is a routing 
restriction (arrow) defined for that move. Also, the connectivity bits defined for switch 4 are all set to one 
except the Cw bit, which obviously is set to zero as there is no west link attached to switch 4. Notice that 
LBDR bits are encoded following a routing algorithm, in the previous case the XY routing algorithm. Other 
routing algorithms can be used, for instance the Segment-based routing algorithm, which provides much 
more flexibility. 

The vIrtical project extends the use of the LBDR bits in order to support truly partitioning and maximum 
flexibility in partitioning definition. Indeed, in this work, we settle the basis for the definition of partitions and 
LBDR bit configurations. Also, the resources required for special partition configurations are shown. As a 
principle goal, the partitioning support must be maximized in the sense that all possible (and usable) partition 
configurations can in practice be set and used. Next, we detail the partitioning support opportunities with 
LBDR and applied to vIrtical. 
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(a) switch IDs and routing restrictions (arrows)         (b) routing and connectivity bits 

Figure 6. Routing restrictions, switch IDs, and LBDR bits 

3.2. Basic Partitioning Support with LBDR 
LBDR natively can provide partitioning support. This can be achieved by proper configuration of the LBDR 
connectivity bits. Figure 7 shows the case where the two previous partitions are configured with LBDR bits. 
As can be seen in the associated LBDR table, the highlighted connectivity bits of LBDR have been properly 
modified in order to avoid messages to escape from their domain. That is, messages are not allowed to 
leave their domain as the LBDR routing believes those links between domains do not exist. Indeed, partitions 
are configured by logicaly disabling links between partitions. The Cx bits involved are simply set to zero. 
Notice that messages can still progress within the domain as there are paths inside the domain. This is the 
case for the flow between switches 9 and 6 which can progress through switch 10.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

      (a) topology and routing algorithm (SR)                         (b) LBDR bits 
 

Figure 7. Two partitions defined with LBDR connectivity bits. 

Also, is important to notice the simplicity and low overhead of this solution for partitioning support. Indeed, 
the LBDR mechanism does not require any single modification. In the past, the LBDR mechanism has been 
proved to be its overhead as large as the XY routing mechanism, and even to scale its overhead with switch 
radix and not with network size. Moreover, the routing algorithm implemented by LBDR does not need to be 
changed, not requiring any extra resource to guarantee deadlock freedom. Indeed, no virtual channel is 
needed. LBDR is the routing implementation technique chosen in vIrtical for the GPPA NoC. 
 
One good mapping strategy should maximize the flexibility in defining partitions or domains. Indeed, the 
targetted partitioning mechanism in vIrtical must be ready for the allocation of tasks to resources in the 
GPPA in a way that GPPA resource utilization is maximiced. Thus, in principle, any domain shape should be 
possible to configure and use. The basic mechanism (just adapting connectivity bits), however, does not 
work in some scenarios. Take as an example Figure 8.a where the SR routing algorithm is used and coded 
in LBDR, and two partitions are mapped. The second partition has been adapted to fit the remaining 
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resources of the GPPA. However, such partitioning configuration is invalid and has a severe problem. The 
path between switches 13 and 10 (or others) can not progress through the partition of Application 1 because 
there is a routing restriction at switch 14. The correct path to communicate nodes attached to the switches 
affected should bo outside the partition (through switch 9). However, the mapping performed prevents that 
path to be taken. Therefore, the match between the routing algorithm (represented by the routing 
restrictions) and the mapping configuration is invalid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    (a) incorrectly mapped                                   (b) correctly mapped 

Figure 8. Two applications mapped with LBDR connectivity bits. SR routing. 

Notice that the mapping algorithm, then, must conform somehow with the routing algorithm being used. 
Indeed, a different location of the routing restrictions would allow the mapping strategy to allocate the 
applications as done in Figure 8.a. This is the case shown in Figure 8.b. The routing algorithm is different but 
the mapping is the same. 
 
To solve the previous problem we can take two directions. The first one is to simply restrict the mapping 
strategy to define only mappings that are in accordance to the underlying routing algorithm. This is the case 
shown in Figure 8.b. The other direction is to reconfigure the routing algorithm and adapt it to the desired 
mappings. This would mean moving somehow from Figure 8.a to Figure 8.b. The vIrtical project will be 
enabled to deal with both solutions. However, they have different impact on performance and mapping 
efficiency. In this report we provide a summary of both solutions in the next sections. 

3.3. Mapping Strategy without Changing the Routing Algorithm 
In this solution, the mapping algorithm (to be implemented in the vIrtical hypervisor) will be aware of the 
underlying routing algorithm and will trigger only mapping solutions compatible with the algorithm, thus, not 
deriving incompatible mappings with the underlying routing algorithm. The mapping algorithm will be 
applicable to any routing algorithm instantiated with LBDR bits. Next we show in pseudocode the algorithm. 
 
Function MappingRequest(num_resources) 

ids: array (n x m) 
num_free: integer 
next_id: integer 
 
if (num_resources>num_free) return -1 
if (square_shape_available(num_resources, ids)) return next_id  
if(rectangular_shape_available(num_resources,ids))return next_id 
if compatibility(num_resources, ids) return next_id 
reconfigure_routing() 
return MappingRequest(num_resources) 

endFunction 
 

The algorithm defines basic shapes of the partitions that can be defined. The basic partitions are: square, 
rectangular, p-shape, d-shape, q-shape, and b-shape. Figure 9 shows the 6 allowed shapes. The algorithm 
keeps an array of IDs as large as the network inside the GPPA (ids). For each router, the id identifies the 
partition the router belongs to. It also keeps the number of free resources (num_free). 
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 (a) square      (b) rectangular     (c) p-shape         (d) d-shape      (e) q-shape        (f) b-shape 
Figure 9. Partition shapes allowed by the partitioning algorithm. 

The algorithm receives a new event, being a new task to be mapped, in which case it also receives the 
number of resources to be assigned (num_resources). If the number of free resources is lower than the 
number of requested ones, the mapping request is rejected (the algorithm returns -1). Otherwise, the 
algorithm maps a suitable mapping on top of the free resources. Priority is given to shapes in the following 
order: square, rectangular, x-shape. For square and rectangular the algorithm does not check compatibility 
with the routing algorithm. Indeed, those shapes do not need any message to leave the region to keep 
connectivity. This is because minimal routing is always enforced by the LBDR version used in this project. 
Notice that a different variation would be required in the case of using LBDR with deroutes (which enable 
non-minimal paths). 
 
For the x-shape regions, if selected, then the algorithm checks for compatibility. If the compatibility 
function succeds (or the shape is square or rectangular), then the resources are assigned to the new domain 
(ids are updated) and the function returns the new ID for the domain. If not, the algorithm returns -1 and 
the request is rejected. 
 
The compatibility function is straightforward and requires only two checks to validate compatibility 
between the shape and the routing algorithm. Figure X7 shows the check for a p-shape. If the switch located 
at internal intersection of both rectangles (the critical switch labeled as C in the figure) has a routing 
restriction between the two links defining the boundary of the region, then the shape is not compatible. This 
can be easily checked by the proper routing bits at neighbour switches A and B in the figure. In case of any 
of those two bits are zero, then, in that case, there are no valid minimal paths for some pair of end nodes 
(indeed between A and B) through the partition. For the remaining shapes a similar check is performed. 
Indeed, all the shapes allowed are rotated versions of the p-shape. 
 
 
 
 
 
 
 
 
 
 

Figure 10. Condition to allow a p-shape to be formed. 

Notice that this strategy may endup in configurations where enough resources are available but the 
underlying routing algorithm and the allowed shapes do not permit to achieve the mapping. This is the case 
shown in Figure X7. The algorithm is called for a new mapping with 3 resources (available) but simply the 
only possible shape (d-shape) is not compatible. 
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Figure 11. Incompatible third mapping on the GPPA. 

One possible solution for those shortcommings could be the remapping of the partitions to make room for 
new compatible partitions. However, this would induce that already running threads in some nodes should be 
migrated, with the associated overhead. If more flexibility is required, in this project the solution conceived is 
to modify and adapt the routing algorithm to the mapped partitions (just the contrary to adapt partitions to the 
routing algorithm). This is shown in the next section. 

3.4. Mapping Strategy with Changing Routing Algorithm 
The idea of this solution is quite simple and is indeed, an extension of the previous one. Indeed, when the 
mapping algorithm fails to map a new partition, then, before quiting, it tries to adapt the underlying routing 
algorithm. This is achieved by calling the function reconfigure_routing. This function drives a total change of 
the routing algorithm driven mainly by the currently mapped shapes. For instance, if the previous d-shape is 
required to allocate a new partition, the function is called and the underlying routing algorithm is changed to 
the one shown in Figure 12. Now, the d-shape is allowed to be allocated, thus the algorithm is called again. 
 
 

 

Figure 12. Changing the routing algorithm to allow a new d-shape partition. 

 
 
 
Notice that, the routing algorithms shown so far perform the so-called zig-zag strategy when placing routing 
restrictions. All these variants belong to the same routing filosophy embedded in the SR routing algorithm. 
This zig-zag strategy is the most flexible one and will be used as the reference routing algorithm. Indeed, it 
allows to map partitions with all the shapes allowed by the mapping algorithm. 
 
Notice that changing the underlying routing algoritihm can lead to a severe desaster for the whole system. 
This is because during the change some deadlocks can arise blocking the network and perpetuating the 
situation until the system is rebooted. To avoid such unwanted probability, there are two alternatives. First, 
the network can be drained, then the new routing algorithm is settled, and then the traffic is resumed (which 
is called static reconfiguration). Second, a dynamic reconfiguration strategy that simply avoids this race 
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condition from happening is used. This will be described below in this deliverable. In vIrtical, whenever the 
routing algorithm needs to be changed (for any reason) the reconfiguration strategy will be invoked and will 
guarantee the smooth transition between the previous routing algorithm and the new one with out any traffic 
being significantly stopped. 

3.5. Support for Global Network Traffic 
Previously it was described the partitioning strategy for isolation in different partitions. However, the GPPA 
nodes have shared resources they need to be accessed from time to time. This is the case of the L2 memory 
and the NI connecting to the external system NoC. In such cases, there is a need to send messages from 
local nodes in a partition to external resources. The previous mapping strategy simply does not allow this to 
happen. 
 
To solve this problem, the LBDR mechanism has been enhanced with more connectivity bits. Indeed, two 
connectivity bits per output port are implemented instead of one. One is referred to as local and the other as 
global. The local one is used by messages generated within the partition (messages sent from nodes to 
nodes). The global one is used by messages addressed to shared resources or generated in those shared 
resources and with destinations being nodes in a partition. With these bits, the LBDR mechanism is changed 
appropiately. Indeed, a multiplexer is added to the routing logic. The multiplexer simply takes the connectivity 
bit to check depending on the nature of the message. Messages, thus, need to encode in their header an 
additional bit that will instruct the switch its nature. It is a intra-partition message, or is a inter-partition 
message. Figure 13 shows the LBDR logic with the new components highlighted in red. 
 
 
 
 
 
 
 
 
 

Figure 13. New logic to allow global and local traffic in the GPPA. 

Notice that this change is orthogonal to the routing algorithm and does not compromise its deadlock-freedom 
property. Indeed, the routing algorithm is applied to the whole network and both inter- and intra- messages 
respect the same routing restrictions (routing restrictions are the same for all types of messages). 

3.6. Possible Extension to Multiple Routing Algorithms 
There is one possible new scenario when global and local traffic is allowed. This comes from the fact that 
one can think each partition could have its own routing algorithm. This is the case shown in Figure 14. 
Different SR instances are implemented on each partition, locally deadlock-free but globaly no. Indeed, this 
is just the addition of unrelated routing algorithms. If global traffic is not going to be present, then this solution 
is deadlock-free and probably each domain could have its optimum routing algorithm. However, if global 
traffic is to be present, then a different solution is needed. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Example of local unrelated routing on each partition. 
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For this case, when different routing algorithms are defined in each partition, in order to allow global traffic, 
two virtual channels are required. One is for the local traffic and the other one is for the global traffic. 
Message differentiation can be achieved with the previous bit defined for the message header. However, 
there is an additional problem. Global traffic must have its own valid routing algorithm. Thus, at each switch 
there is a need of having two different routing algorithm implementations. When being implemented in LBDR 
this means the routing bits need to be duplicated and a multiplexor used, similarly as how it was done for the 
connectivity bits. Figure 15 shows the implementation. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. LBDR modifications to allow partition- and GPP-level different algorithms. 

Notice that this solution doubles the overhead of LBDR (as double number of bits is needed). Although 
LBDR cost is low, it should be analyzed the benefits of this proposal. However, this depends on the needs of 
the local applications running inside the partitions to use a different routing algorithm.  
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4. Dynamic Reconfiguration 
To address the new functionalities, the NoC must be enriched with an efficient reconfiguration process which 
enables the smooth and transparent transition between system configurations. For instance, Figure 16 
shows two different configurations of a multicore system over time. In the first one (configuration A) different 
applications are mapped to the NoC nodes and execute concurrently, while other resources are powered 
down. Later, the resource manager may trigger a chip reconfiguration to power on unused resources and 
thus activate a new application (configuration B).  
 

        
configuration A                            configuration B 

Figure 16. Two NoC configurations where the routing algorithm needs to be adapted. 

The transition between configurations needs a careful design of the NoC routing algorithm, which establishes 
the paths for every packet in the network. At each configuration a different routing algorithm is needed. In 
both cases, the algorithm must be deadlock-free (should not introduce cycles in its channel dependency 
graph). However, in the transition between configurations, both algorithms can induce extra dependencies 
that lead to deadlock.  
 
Therefore, in order to migrate from one configuration to the other, one possible approach is to drain the 
network, then changing the routing algorithm to the new one and finally resuming traffic injection with the 
new algorithm. This is the case of the so called traditional static reconfiguration (TSR). In this case system 
performance is likely to be heavily impacted by the reconfiguration process due to the temporarily low 
resource utilization. Alternatively, the network can be dynamically reconfigured, in the sense that traffic is not 
stopped during the reconfiguration process, but an effort is needed to avoid deadlock situations. This is 
typically achieved by devoting extra resources to the network. We refer to this case as the dynamic 
reconfiguration. 
 
In this work we advance the state-of-the-art in reconfiguration frameworks for NoC-based systems. However, 
instead of designing a brand new reconfiguration mechanism, we recognize the large amount of bibliography 
and proposals made for reconfiguration mechanisms in high-performance off-chip networks. In this sense, 
we pick the approach that better suits the NoC domain and the tight resource budgets of the on-chip 
environment.  
 
The Overlapping Static Reconfiguration process (OSR) in [11] enables a transparent system reconfiguration 
process. However, in [11] only the protocol was described while at the same time highlighting the key 
architectural requirements to properly support it (namely virtual channels, routing tables, event notification, 
involvement of end-nodes in the reconfiguration process). Unfortunately, no practical implementation insights 
were provided, thus raising the reader's skepticism on the applicability of OSR to an on-chip setting. 
  
Here we report the  implementation of the native OSR protocol in an on-chip network, proving that the 
needed network over-provisioning is such to make the protocol not viable in practice. As a consequence, we 
target the modification of OSR to better match the requirements of the resource-constrained NoC setting, 
thus resulting into the OSR-Lite framework. Such modifications concern both selected protocol features 
(without giving up the goodness of the underlying idea) and relevant implementation techniques. 
 
With OSR-Lite in place, it is possible to reconfigure a whole 64-node network in a few hundreds of cycles, 
enabling the entire and transparent transition between any pair of independent and unrelated configurations. 
Moreover, this is achieved with no impact on network latency and with no impact on switch delay. The 
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reconfiguration performance of OSR-Lite makes it the enabling tool for planned reconfigurations in multicore 
systems. The following specific scenarios can be therefore materialized by the outcome of this work: 
 

- Virtualization of the system. Our method enables the runtime division of the entire network into 
sets of virtual regions for assignment to different applications running concurrently. This is the 
primary goal in vIrtical. 

- Power management. The reconfiguration mechanism can be exploited for powering down unused 
resources; such functionality becomes compulsory to keep power consumption levels to reasonable 
bounds. 

- Reliability.  When a NoC is augmented with transient fault tolerance, then this kind of faults can be 
tolerated without any loss of information. However, intermittent faults are likely to be an indicator of 
the gradual onset of a permanent fault (typically, a wear-out fault). In this case, OSR-Lite can be 
used to reconfigure the network so to exclude the affected link/switch component, before the 
permanent fault shows up and causes packet loss.  

4.1. Previous Work on Reconfiguration 
During the last two decades, a large number of proposals have been presented about resilient routing for 
both off-chip and on-chip networks. These approaches are either nonreconfigurable fault-tolerant routing 
strategies which tolerate a limited number of faults [12, 13, 14, 15], or reconfigurable routing mechanisms 
that allow unlimited changes to the network. We focus on schemes of the second category, in particular on 
those based on reconfiguration processes that consider such changes to the network structure to obtain new 
routing paths replacing the previous ones. 
 
In off-chip networks, such as those used in clusters, during a reconfiguration process, the topology resulting 
from the connection/disconnection or failure of network components is discovered by a central node, which 
runs the reconfiguration algorithm in software. The management software computes new routing tables and 
distributes them to each node. Detecting the new topology and communicating the new routing tables can be 
completed with or without traffic into the network. Static reconfiguration first stops and drains all user traffic 
from the network before completing the reconfiguration process  [16, 17]. This reconfiguration method is 
unable to provide real-time and quality-of-service support needed by some applications. On the contrary, 
dynamic reconfiguration updates routing tables without stopping user traffic. In this case, the main challenge 
is to guarantee deadlock freedom as old and new routing functions are simultaneously active [18, 19, 20, 21, 
22, 23, 24, 11]. 
 
In the context of networks on chip, new techniques have been proposed and other retain some features of 
the above. The Vicis NoC architecture [25] uses the turn routing model during fault-free operation, and a 
heuristic solution that makes exceptions to that routing model to maximize connectivity. Reconfiguration 
process rewrites the routing tables based on the information from built-in-self-test units in each router. When 
large number of faults occur, exceptions sometimes result in deadlocked routing paths.  
 
A reconfigurable fault-tolerant deflection routing algorithm based on reinforcement learning for NoC has been 
proposed in [26]. The algorithm reconfigures the routing tables through reinforcement learning based on 2-
hop fault information. In [27], a reconfigurable routing algorithm for a 2D-mesh NoC is presented. This 
algorithm introduces low hardware cost but can only be used in one faulty router or regular region topology. 
Other proposals can deal with irregular fault regions. A mechanism to tolerate failures in networks for parallel 
computers is described in [28]. It tolerates any number of failures regardless of their spatial and temporal 
distributions. Immunet is limited by the network connectivity and results in high area overhead because it 
requires three routing tables per router. In [29], a region-based routing has been proposed to handle irregular 
networks. This algorithm groups destinations into regions to make routing decision. However, it does not 
provide a reconfiguration method to migrate from one configuration to another. 
 
Finally, [30] presented Ariadne, an agnostic recocfiguration algorithm for NoCs, capable of circumventing 
large numbers of simultaneous faults, and able to handle unreliable future silicon technologies. Ariadne 
utilizes up*/down* for high performance and deadlock-free routing in irregular network topologies that result 
from large numbers of faults.  
 
Ariadne is implemented in a fully distributed mode. Thus it results in very simple hardware and low 
complexity although it comes with suboptimal solutions for lack of global view. The up*/down* routing will not 
perform optimally under certain configurations, specially in the absence of failures (in a 2D mesh). In 
addition, up*/down* routing is encoded in routing tables at switches. Unfortunately, the Ariadne latency badly 
scales with network size (the configuration latency increases with the square of the nodes number). This 
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latter property has a severe impact on the network performance especially because Ariadne does not 
guarantee a transparent transition between configurations. The flits have to freeze in the network pipelines 
and the throughput drops to zero during reconfiguration. Even when the communication resumes, a high 
contention due to the fullness of injection queues strongly degraded the network performance for a long 
period. 
 
As opposed to these solutions, OSR-Lite does not use routing tables at switches, allows coding any efficient 
routing algorithm (even DOR routing) and requires lightweight switch support to enable truly fast dynamic 
reconfiguration. Moreover its latency smoothly increases with network size, and the configuration transition is 
transparent, ultimately preserving the throughput of the system. 

4.2. Native OSR technique 
Typically, a routing algorithm is deadlock-free when its channel dependency graph (CDG) is acyclic (we do 
not consider fully adaptive routing algorithms). The CDG is set by representing the resources of the network 
by vertices (mainly the buffers associated with the ports of each switch) and the dependencies between two 
resources by arcs. There is a dependency between two resources r1 and r2 if a message can use r1 and 
request r2. 
 
Two routing algorithms R1 and R2 are deadlock-free when they have an acyclic channel dependency graph. 
However, when using both algorithms at the same time new extra dependencies are induced potentially 
leading to deadlock. This can be seen in Figure 17 where a cycle is formed when using two routing 
algorithms (XY and YX) at the same time. During a reconfiguration process we refer to Rold as the old routing 
function and Rnew as the new routing function. Similarly, packets routed with Rold will be referred to as old 
packets and packets routed with Rnew will be referred to as new packets. 
 
The native OSR method is based on the fact that those cycles are created only when old packets using Rold 
are routed after new messages using Rnew. If old packets are guaranteed to never go behind new packets 
the extra dependencies do not occur in practice and then no deadlock can be formed. Indeed, in a static 
reconfiguration process the entire network is drained thus guaranteeing old packets will never go behind new 
ones. 

 
Figure 17. Channel dependency graph for two routing algorithms and their combination. 

 
OSR is a static reconfiguration process but localized at link/router level, and not at network level. Indeed, it 
guarantees that new packets are only forwarded via links that have been drained from old packets. This is 
achieved by triggering a token that separates old packets from new packets. The token is triggered by all the 
end nodes and tokens advance through the network hop by hop. Indeed, tokens follow the CDG of the old 
routing function, draining the network from old packets. However, in contrast with static reconfiguration, the 
new packets can enter the network at routers where the token already passed. Figure 18 shows the 
complete native OSR mechanism, involving a central manager. In a first step, a reconfiguration action is 
triggered, either by the detection of a malfunctioning component or by a higher level manager in the system 
stack requiring a reconfiguration, e.g. a new application is admitted. In any case, when needed the central 
manager may receive event notifications through the network (step 1). Then, in step 2, the new algorithm for 
the new configuration is computed by the central manager. The resulting information is disseminated to all 
the switches in step 3. In step 4 the end nodes trigger the token and OSR spreads throughout the network 
(step 5). 
 



 23 

 
Figure 18. Reconfiguration steps performed in an OSR environment. 

Figure 19 shows how tokens advance in a network. At a given output port, a token is triggered to the next 
downstream router indicating the output port has been drained from old packets. This is guaranteed when 
the token has been received through all the input ports of the switch that have old (Rold) output dependencies 
with the output port. These port dependencies can be extracted from the Rold  routing algorithm. However, 
how to perform this is not explained in [11], although it is key to obtaining an efficient implementation. Notice 
that the token divides two epochs in the network, the old epoch (when packets are routed with the Rold 
routing function) and the new epoch (when packets are routed with the Rnew routing function). 

                     
         (a)                           (b) 

Figure 19. Token advance in a network: (a) check for absence of old messages and input ports 
epoch, (b) token signal propagation. The token separates old traffic from new traffic. 

4.3. OSR-Lite 
The OSR mechanism needs to be modified in order to better suit the NoC environment so to become an 
efficient and plausible mechanism for planned reconfigurations. Indeed, the main issues addressed in this 
work are the following: 
 

- Codification of the routing information. During the reconfiguration process both routing algorithms 
coexist at the same time at routers. This means resources need to be sized for both algorithms. In 
OSR, routing tables were used to store the routing info. In NoCs, however, routing tables are an 
expensive resource in terms of access time, area, and power consumption. Therefore, hosting two 
routing tables per switch input port does not appear to be a cost-effective solution for OSR-Lite. 

 
- Control virtual channel (VC) used in OSR. Different actions (sending routing information to 

routers, triggering the reconfiguration process) are performed during the OSR reconfiguration which 
imply the exchange of information between a central manager and the routers or the endnodes. In 
[11] this was implemented by means of a control VC. Unfortunately, using VCs only for that purpose 
has a large impact on router implementation (wseen later) and is not fully justified in an on-chip. 

 
- Reliable control VC assumed in OSR. A different (spanning-tree) algorithm is assumed in OSR to 

effectively route control packets through the control VC. 
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- Involvement of end nodes in the reconfiguration process. In OSR the end nodes were notified to 

trigger the reconfiguration. This is done by end nodes injecting the token directly as a new packet. In 
NoCs, reaching the end nodes via dedicated packets from the central manager would  be a time-
consuming course of action. In order to cut down on the reconfiguration latency, involving only 
switches and not endnodes in the reconfiguration would be an appealing property in a NoC setting. 

 
 

 
Figure 20. Reconfiguration steps performed in an OSR-Lite environment. 

In order to address all these issues, we propose the OSR-Lite approach. Figure 20 shows all the steps and 
the main modifications performed. In particular, we exploit a control network through which routers can 
inform about expected topology changes (e.g., an output link is having frequent transient failures and is 
going to fail soon, or a region of the NoC is overheated and needs to be powered down). The control network 
collects all the notification events and sends them to a central manager (step 1). If the reconfiguration is 
instead initiated by a resource manager in the context of power management or virtualization strategies, step 
1 can be skipped. The central manager then computes the new configuration (step 2) and disseminates the 
new routing information to the switches (step 3). Then, every switch starts the OSR-Lite reconfiguration 
process in step 4. Notice that end nodes are not involved in the reconfiguration process.  
 
The control network can be used also in step 3 for routing bit dissemination to the switches. In previous work 
in [31] we have presented the design of a dual network for switch-to-global manager bidirectional signaling, 
thus offloading critical control tasks from the main data network. In that work, the dual network was used to 
notify diagnosis information to the manager following the main NoC testing phase, and to notify configuration 
bits of the routing mechanism to the switches. The same network could be reused for other purposes, such 
as congestion management, deadlock recovery and software debugging. In [31] it is showed to be a cost-
effective solution for control signaling, which can be easily and effectively made reliable through a 
combination of fault-tolerant and online testing strategies. For this reason, this work relies on such a fault-
tolerant dual network to convey control information of the reconfiguration process. Furthermore, [31] also 
reports an efficient computation algorithm that comes up with the routing configuration bits of a new network 
partitioning or topology shape. This is the algorithm the controller runs in step 2. Given that the control 
network and the computation algorithm are covered by previous work, from now on we focus on the core 
reconfiguration process of the network and on the microarchitectural support for that. The reader should 
keep in mind that all these mechanisms will work together in the complete reconfiguration framework. In the 
next section we describe the router implementation in more detail. 

4.4. OSR-Lite implementation 
Without lack of generality, we use the xpipesLite switch architecture [32] to prove viability of our OSR-Lite 
mechanism. The switch implements both input and output buffering and relies on wormhole switching. The 
crossing latency is 1 cycle in the link and 1 cycle in the switch itself. The switch relies on a stall/go flow 
control protocol. It requires two control wires: one going forward and flagging data availability ("valid") and 
one going backward and signaling either a condition of buffer filled ("stall") or of buffer free ("go"). We 
assume the following parameter values in the architecture: 32 bit flit width, 6 flit output buffers and 2 flit input 
buffers. To note that different flit width and input/output buffer depth could be assumed while preserving the 
OSR-Lite mechanism implementation. 
 
The switch architecture is extremely modular. A port-arbiter, a crossbar multiplexer and an output buffer are 
instantiated for each output port, while a routing module is cascaded to the buffer stage of each input port. 
We implement logic-based distributed routing (LBDR) [33] as described previously in this report. LBDR bits 
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are computed by a central NoC manager and disseminated to the switch input ports through the dual control 
network. Indeed, two sets of LBDR bits are allocated at each router for OSR-Lite. Upon receiving the new 
routing bits, a router triggers the reconfiguration process by auto-generating initial tokens at its local input 
port (port connected to an end node) and processing the tokens accordingly.  
 
The logic enabling the OSR-Lite mechanism was integrated into the above mentioned baseline switch taking 
care to preserve its modularity together with its performance. Thus, the OSR-Lite logic was designed in new 
modules plugged into the switch without affecting the existing blocks. Moreover, the new modules were 
instantiated for each switch port following the modularity of the baseline blocks (the OSR-Lite mechanism 
can be extended for switches of every arity by means of simple logic replication).  
 

 
Figure 21. Switch input buffer enhanced with the OSR-Lite logic and a new set of routing mechanism. 

OSR-Lite at the Input Ports 
As a first step, the baseline switch was enhanced with a second routing logic unit (LBDR1) collecting the new 
routing info coming from the central manager. This unit is connected to the input buffer as the baseline 
LBDR0 block (see Figure 21) although is used exclusively for routing packets in the new epoch (new 
packets). The switch arbiters need to select the routing info from the appropriate routing logic block (either 
LBDR0 or LBDR1). This is obtained from a multiplexer configured by the current epoch of the input port (in a 
flip-flop). In order to reduce the reconfiguration latency, the input port evolves to the new epoch as soon as 
there are no stored header flits at the input port with the epoch bit set to zero (Epoch 0 headers signal) and 
the token has been received from the upstream switch (upstream epoch signal). Notice that in the case of 
the ports connected to end node (local port; local port flag), the token is assumed to arrive with the arrival of 
the new configuration bits (LBDR1 flag). In this case, the header flits located in the buffers are considered of 
the new epoch when the new configuration bits have arrived and the routing mechanism (LBDR1) is set. 
Notice that local ports do not introduce dependencies between channels that may lead to deadlocks, 
therefore is safe to assume all the injected flits as belonging to the new routing function. To notice that the 
token propagation will always start from local ports at switches, not involving end nodes. 
 
The number of flit headers to be routed by LBDR0 and stored in the buffer is detected by a 2 bits counter 
monitoring the incoming and outgoing headers of the input buffer module. The counter increases its value 
when a header is accepted and the incoming token is low and decreases its value when a header is sent. In 
order to preserve the max performance of the baseline switch, sequential logic stages were exploited to 
avoid impacting the critical path in the OSR-Lite mechanism. 
 
Notice that the implementation prevents possible race conditions from occurring. For instance, a token may 
be received from the upstream switch before the new routing bits are received. In that case, the header flits 
in the input buffers are stalled and declared not valid to the internal switch logic until LBDR1 is set. 
 
OSR-Lite at the Arbiters 
OSR-Lite requires a lightweight new module plugged around the baseline arbiters. The logic is reported in 
Figure 22. Basically, a set of AND/OR logic blocks together with a set of EXOR blocks allow the arbiter to 
process an incoming header exclusively when the epoch of the switch input port is the same as the one of 
the destination output port. On the contrary, a packet residing in an input port with the new epoch is stalled 
until the output port evolves to the new epoch (guaranteeing old packets go first and then new packets). 
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Figure 22. Switch arbiter enhanced with the OSR-Lite logic. 

 
 
OSR-Lite at the Output Ports 
Concerning the output port, an output port evolves to the new epoch when all the input ports with output 
dependencies to this output port have evolved to the new epoch. In order to efficiently deal with the 
dependencies, OSR-Lite takes profit of the routing bits used in LBDR. Routing bits indicate the routing 
restrictions that exist at neighboring switches. Therefore, they can be seen also as channel dependencies. If 
the Rxy bit is set it means that there is a link dependency between the output port x and the output port y at 
the next switch. On the contrary, if the bit is reset it means there is no dependency and in that case we can 
safely assume no packets will come through the port x requesting output port y. Therefore, the output port 
needs to receive both the epochs of the input ports and the routing restrictions located at the neighboring 
switches. The mechanism  is enabled by a set of OR blocks (each of them belonging to a different input port) 
followed by an AND block, as represented in Figure 23. 
 

 
Figure 23. Switch output buffer enhanced with the OSR-Lite logic. 

In contrast with the baseline OSR technique (where the routing restriction information was saved in the 
routing table), the OSR-Lite mechanism needs to obtain channel dependencies from the routing logic located 
at neighbor switches. As a result, three additional routing bits are sent by the LBDR0 logic of the upstream 
switch together with the token bit. To note that LBDR0 received its routing bits information through the 
control network in an earlier configuration stage. 
In addition, the input port needs to send the incoming routing restriction signals to the appropriate output 
ports. Thus every link is extended by 4 additional wires (i.e. 1 token wire + 3 routing restriction wires). See 
Figure Figure 24. 
 
Finally, the token is sent by the output port to the downstream switch when all the input ports with 
dependencies with the output port have evolved to the new epoch, meaning all these input ports have 
drained all the old packets from their buffers (see the Local Epoch signal in Figure 23).  
 
Once the network has completely migrated to Epoch 1, the central manager can safely fill LBDR0 bits with a 
copy of LBDR1 bits, and instruct all the switches to safely swap to Epoch0 again. This allows for the system 
to be ready in few cycles for a new reconfiguration process. 
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Figure 24. Configuration information from neighbor switches and control network. 

4.5. System-Level Evaluation 
In this section, we evaluate OSR-Lite. First, we show how the OSR-Lite propagates over the network. Then, 
we evaluate the reconfiguration time overhead under different injection rates using synthetic traffic. 
Moreover, we compare the proposed reconfiguration with a static reconfiguration process in terms of network 
latency. Finally, we provide performance results by running real applications in a full system simulator 
environment. 
 
Propagation 
In order to simulate the reconfiguration process, we have modeled the OSR-Lite scheme in our event-driven 
cycle-accurate network simulator. A 8 x 8 mesh is used  with wormhole switching (although the proposed 
method also works for virtual cut-through switching). Flit size is set to 4 byte and messages are 5-flit long. 
For the transient state, 50K messages are assumed and results are collected after 50K messages are 
received. 
 

         
    (a)     (b) 

Figure 25. SR-Lite propagation over a 4 x 4 2D mesh topology: (a) scrolling up, and (b) scrolling 
down. 

Figure Figure 25 shows how OSR-Lite tokens propagate over a mesh when there is no traffic traveling 
through the network. The diagonal arrows represent the bidirectional restrictions imposed by the routing 
algorithm (Segment-Based routing [34] in this case). In this figure, the numbers inside the switches represent 
the cycle when the token signal is propagated to its neighbors. Moreover, the arrows among switches depict 
the direction of the token signal propagations. As we can see, the token signals propagate among switches 
throughout the network in the order of the routing channel dependency graph, where Figure 25.(a) follows a 
scrolling up zig-zag direction, and Figure 25.(b) follows a scrolling down zig-zag direction. 
 
When no messages are traveling  through the network and a regular 2D mesh is considered then the 
number of clock cycles required for the OSR-Lite reconfiguration process is modeled by the following  
formula: 
 
   PropagationTime = (4xDx(D-1))-1 
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where D represents the mesh dimension. As we can see, it is a very fast process as the protocol uses only 
223 cycles when a 8 x 8 mesh is considered. The high speed of the OSR-Lite reconfiguration process allows 
to perform frequent planned reconfigurations without affecting the integrity of the system operations. 
However, when there are messages traveling through the network the switches must drain the input queues 
of old messages before propagating the token signal as explained previously. This fact delays the OSR-Lite 
propagation depending on the network load. In the following, we analyze this effect taking into account 
different injection rates. 
 
Time Overhead 
In order to analyze the impact of the network load over the OSR-Lite reconfiguration framework, we have 
performed different simulations varying the injection rate. For each rate, we assume a constant packet 
generation rate for all end nodes. Moreover, in order to ensure that start-up instabilities do not affect our 
evaluation results, reconfiguration is not invoked until the network is completely stabilized. Figure Figure 
26.(a) shows the performance obtained in a 8 x 8 2D mesh network under uniform traffic when no 
reconfiguration process is triggered. The figure indicates the three network injection rates that are used in 
the simulations. In what follows, the three rates are referred to as Low, Medium, and High, respectively. 
 

 0

 20

 40

 60

 80

 100

 0  0.25  0.50  0.75

Av
er

ag
e 

La
te

nc
y 

(c
yc

le
s)

Traffic (flits/cycles/switch)

Low Medium
High

 
 
    (a)     (b) 
 

Figure 26. (a) Average message latency at different injection rates for SR routing on 8 x 8 2D mesh 
(b) OSR-Lite propagation over a 8 x 8 2D mesh topology at different injection rates. 

Figure 26.(b) shows the number of cycles involved in the propagation of the OSR-Lite process taking into 
account the three different injection rates. Each bar depicts the mean of 30 simulations varying the seed. 
Moreover, we show the error bars that represent the 95% confidence interval. As we can see, the 
propagation time does not exceed 242 cycles for the High injection rate. Moreover, the difference between 
both the minimum and the maximum network loads is only 14 cycles, and therefore, the network traffic 
condition has a minimal effect on the OSR-Lite token propagation. 
 
Finally, the contribution in terms of cycles for event notification (A), algorithm computation (B), configuration 
bits delivery (C) and OSR-Lite propagation (D) should be taken into account to determine the total latency for 
a complete reconfiguration process. In particular, (A) and (C) latencies depend on the position of the 
components to reconfigure with respect to the central manager. On the other hand, (B) and (D) latencies are 
related to the number of components to reconfigure and the traffic injection rate respectively. As an example, 
when we consider a 8 x 8 mesh then at most 66 cycles are required to cross the control network. Moreover, 
if 7 switches need to be reconfigured  (i.e. the scenario of Figure 16) then 195 cycles are required by the 
computation algorithm in [31]. Finally, 242 cycles are spent by (D) in a High injection rate scenario. Summing 
up, the total amount of cycles for a complete reconfiguration process is the following: 
 
  66(A) + 196(B) + 66(C) + 242(D) = 569 cycles 
 
For dissemination of new LBDR bits to the switches, the dual network has to carry 17 bits per switch. 
However, not all switches need to be reconfigured, since the algorithm in [31] is able to evolve a system 
configuration into a new one while updating the minimum amount of LBDR configuration bits. 
 
Comparison 
In this section we compare the OSR-Lite protocol and the traditional static reconfiguration process (TSR). 
Figure 27 represent the average network latency respectively under hotspot traffic and uniform traffic with 
Medium and High injection rates, where both reconfiguration processes (OSR-Lite and TSR) are invoked 
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after 150K cycles. Moreover, we have plotted two additional lines: the average message latency for the full 
mesh (Full-Mesh), and the average message latency for the mesh which has one link disabled from the 
beginning of the simulation (1-Fail-Mesh). Notice the y-axis is in logarithmic scale. Moreover, we have 
selected a random link in the 8 x 8 mesh as faulty. Under hotspot traffic pattern, 5 nodes are randomly 
chosen as hot spots which receive an extra proportion of traffic (30%) in addition to the regular uniform 
traffic. 
 
The first observation is that both Full-Mesh and 1-Fail-Mesh obtain a different message latency. This is 
normal because the 1-Fail-Mesh suffers a latency degradation due to the disabled link. On the other hand, 
the two reconfiguration processes (OSR-Lite and TSR) start at the same time at the 150K cycle. At this point, 
the reconfiguration process moves from the Full-Mesh to the 1-Fail-Mesh topology. This effect can be 
estimated by the figures as the latency evolves from the latency obtained for the Full-Mesh to the latency 
obtained for the 1-Fail-Mesh.  However, an important result based on the figures is that OSR-Lite performs 
the reconfiguration without degrading the obtained performance. In this case, the obtained latency grows up 
to the 1-Fail-Mesh line. Therefore, the latency is always near the maximum obtained with the 1-Fail-Mesh 
topology. In the TSR case, on the contrary, the latency is degraded due to the reconfiguration process 
overhead (need to drain the network). In the three cases, the latency grows above the 1-Fail-Mesh latency 
until it stabilizes. Specifically, in the Figure 27.(c) the latency of the TSR line grows to more than 500 cycles, 
and then stabilizes after 350K cycles. In this period of time, the TSR reconfiguration is degrading the 
obtained latency more than the link failure degradation produces. On the other hand, the OSR-Lite latency is 
upper bounded by the 1-Fail-Mesh latency. 
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  (a)            (b)            (c) 
Figure 27. Average message latency with (a) hotspot traffic and uniform traffic ((b) medium network 

load and (c) high network load). 

Interestingly, the hotspot traffic and the uniform traffic with a High load have similar reconfiguration 
performance. Then, we can observe that the OSR-Lite has no impact on the message generation while the 
TSR process does. In fact, the TSR process increases considerably the obtained latency for all the cases. 
The main reason is that TSR queues all the messages at end nodes during reconfiguration while that need 
disappears in the OSR-Lite scheme. 
 
Performance with Real Applications 
In the following, we present performance results when real applications are used. In this case, we use a full-
system simulator based on Simics-GEMS [35,36]. Regarding the on-chip network, we have used the same 
configuration as the previously detailed. Messages are 8-flit long for control messages and 72-flit long for 
data messages. As workload, we have used the PARSEC v2.1 benchmark suite [37]. Although we have 
used all the applications from the PARSEC v2.1 benchmark, due to the lack of space, we only show results 
for two applications: Blackscholes, and Streamcluster. In all cases, Simsmall input set has been used. 
 

 
Figure 28. Performance with real applications. 
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Figure 28 shows the execution time, the network latency, and the network throughput. All the results are 
shown in normalized terms with respect to the results of a fully connected 4 x 4 mesh without link failures. 
The x-axis depicts the 1Fail topology (a 4 x 4 mesh topology with 1 link failure), and 1Fail-OSR-Lite that 
represents the same topology as 1Fail but, in this case, the OSR-Lite reconfiguration process is triggered in 
the middle of the application execution. Therefore, for this latter case, we pass from the fully connected 
topology to the 1Fail topology using the OSR-Lite reconfiguration. These results are shown for both  
Blackscholes, and Streamcluster PARSEC applications. 
 
As we can see, the performance degradation is minimal for both cases (1Fail and 1Fail-OSR). Regarding the 
1Fail-OSR case, obviously the degradation is lower because the link failure only affects half of the 
application execution, and the execution time degradation does not exceeds 3% of execution time overhead 
in any application. 

4.6. Synthesis results 
The implementation of a switch enhanced with the OSR-Lite mechanism has been compared in terms of 
area and routing delay with a switch based on the native OSR mechanism described previously and the 
baseline xpipesLite switch architecture [32]. The evaluation will demonstrate the infeasibility of the native 
OSR mechanism for an on-chip setting because of the need for VCs and the low scalability of routing tables. 
 
For the experiments, an industrial memory compiler for a 40nm process technology was used to generate 
the memory macros required by the routing tables of the OSR mechanism. The switches together with their 
reconfiguration mechanisms were synthesized for the same 40nm industrial library.  
 
Area Comparison 
The description of the OSR mechanism in [11] focuses on the protocol details and it lacks of practical 
implementation details. Thus we exploited the information provided in [11] to model the OSR mechanism at 
RTL level and evaluate this latter solution in an on-chip constrained system. Especially, the OSR mechanism 
relies on 1 data VC supported by an additional control VC, and it adopts routing tables.  As a result, we 
implemented the OSR mechanism into a 5 x 5 switch augmented with VCs by following the design 
techniques for area efficiency in [38] and we enhanced the switch with the 40nm memory macros to model 
the routing tables. 
 
The 8 x 8 mesh topology is considered. Thus, 64 end-nodes are the total number of destinations in the 
system. When routing tables are used for distributed routing, each switch input port has a memory module 
with a number of words equal to the amount of destinations. Every word is composed of 3 bits, matching the 
switch radix. Given a destination ID, the switch selects the target output port based on look-up table. The 
minimum word width that the memory compiler, at the 40nm technology node, can generate is 4 bits. As a 
result, above all the available memory cuts, a single-port low-power RAM with 64 words of 4 bits was the 
memory cut showing the lowest routing delay and area footprint. 
 
Finally, Figure Figure 29 shows the area footprint of this latter solution (the OSR SW) with respect to a 
baseline switch and our proposed solution (OSR-LITE  SW). In particular, the OSR-Lite area overhead takes 
into account also the contribution of the control network carrying the information from the global manger to 
the routing mechanisms. For this purpose, we exploited the fault-tolerant control network proposed in [tecs]. 
 
The OSR-Lite reconfiguration mechanism requires a 14% of area overhead with respect to the baseline 
switch. This result is mainly due to the  additional LBDR routing mechanism (+12%) contribute. On the other 
hand, the area overhead of the remaining reconfiguration logic is negligible when integrated into the switch. 
 
Interestingly the OSR-Lite switch outperforms the baseline OSR switch: this latter requires approximately two 
times larger area than the counterpart solution. This result is mainly due to the severe area penalty 
introduced by the VCs and the 65% area saving achieved by the LBDR mechanism with respect to the 
routing table. 
 
As a last consideration, the routing mechanism of the OSR-Lite solution scales with network size. In fact, 
while the memory macro suffers from increasing area and delay penalties, the logic complexity of the 
distributed routing algorithms does not depend on the number of destinations, hence it stays constant. 
Indeed, the distributed routing algorithms just grow with the switch radix. 
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Figure 29. 5x5 switch (a) area comparison. 

Routing Delay Comparison 
In order to evaluate the effects of the OSR-Lite mechanism on the switch routing delay, we performed the 5 x 
5 switch synthesis for maximum performance. The same experiment was repeated for both the baseline 
switch and the switch augmented with the baseline OSR mechanism. The OSR-lite switch and the baseline 
switch achieved a similar maximum operating speed of 750 MHz. The reconfiguration scheme was designed 
to avoid long critical path and preserve the baseline switch performance. Our OSR-Lite-enabled switch is 
thus capable of an at-speed reconfiguration. 
 
On the other hand, the OSR switch is the 35% slower than our proposed solution. This result is mainly due to 
the intrinsic complexity added by the VC logic and the delay required to access the 64 words RAM routing 
tables.  
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5. Quality of service 
One of the key features for effective virtualization in embedded systems is that of providing APIs to 
application developers in both the open and embedded virtualized environment to allow them to negotiate 
with the hypervisor in terms of QoS/SLA. This goal will be pursued within our project by considering a 
vertically integrated approach where suitable high-level constructs will be designed and implemented within 
a widely adopted and understood parallel programming model such as OpenMP. The compiler and 
runtime systems will be in charge of actually interacting with the hypervisor to ensure that the desired goal is 
achieved with the maximum efficiency in terms of different metrics (QoS, energy). In order to complete the 
picture, the link to the hardware is needed. In this project, a NoC infrastructure natively conceived for best-
effort communications will be progressively augmented to also serve QoS traffic flows. As a guiding 
philosophy, QoS guarantees will be provided in terms of prioritized traffic (with reconfiguration capability of 
priorities to match the requirements of multiple use cases) and even of more aggressive circuit switching 
techniques.  
As a main innovation with respect to state-of-the-art QoS NoC frameworks, vIrtical fosters two main 
approaches:  
1- QoS for NoCs is impractically implemented in hardware only, due to the large and hard-to determine 
number of possible use cases at run-time. A proper mix of hardware facilities and software controlled 
management policies is vital to achieving efficient results.  
2- In this project we are going to offer runtime QoS differentiated services by leveraging runtime 
reconfiguration of the NoC backbone. It is worth observing that virtualization and QoS are two tightly 
interrelated requirements for embedded systems. In this direction, the extension framework of NoCs for QoS 
will be synergic with the routing mechanism extensions for network partitioning and isolation illustrated 
above. 
Given that, this section of the deliverable reports on a soft-QoS package made available by vIrtical to 
deliver QoS guarantees to network packets/flows, and that is structured into: 

• packet-level soft-QoS through priority-class round robin; 
• flow-level soft-QoS through message-class VC allocation; 
• full bandwidth reservation (circuit-switching). 

The implementation of the proper hardware support to materialize the soft-QoS package cannot overlook the 
highly dynamic landscape of the GPPA environment, where network partitions are allocated/deallocated at 
runtime. The deliverable therefore captures the fundamental interdependencies between the runtime 
reconfiguration support of the GPPA NoC and the need to preserve QoS provisions of running 
communication flows at any time.  
In the future, the above items will be the tuning knobs in the hardware for the QoS requirements that the 
programming model will require through the hypervisor.  

5.1. Packet-level soft-QoS through priority-class round robin. 
One of most commonly used arbitration policies in NoC switches are Fixed-Priority and Round-Robin. The 
first is unbalanced by definition, indeed the contention is won always by packets from input ports that have 
the higher fixed priority. The second operates on the principle that a request which was just served should 
have the lowest priority on the next round of arbitration. Applying it to a single switch, we get that every 
packet is equally treated but this loses its validity considering a larger scenario, like a whole NoC or simply a 
part of it.  
 

 
Figure 30: Round Robin policy loses its fairness scheduling switch_B traffic. 

In Figure 30 many masters (M_A, M_B, M_C, M_D, M_E) want to approach the same slave resource (S). It’s 
obvious that a Round Robin policy can’t provide an equal sharing of the resource, because packets from 
north input port (from switch A) get the 33% of grants, the same for packets from M_B, and the remaining 
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33% is (unequally) divided between M_C, M_D, and M_E, all arriving from west input port, losing fairness.  
The above issues can be solved by combining the two arbitration policies into a hybrid policy. By 
construction, round robin corrects the unbalancing property of fixed priority, while fixed priority can offset the 
global imbalances that arise in a round-robin NoC. Weighted round robin is an example of such hybridized 
arbitration policies: thanks to weights, the available bandwidth is not equally split among contenders, but an 
heterogeneous bandwidth allocation is performed. We did not find this to be a good match with the 
requirements of a GPPA, where differentiated bandwidth assignments to switch ports are a bit innatural. In 
contrast, in a GPPA it is possible to identify packet types and traffic flows among which a priority ranking 
should be established. Within each service level, there is then no reason for establishing further priority 
rankings, therefore round-robin can be applied. The reason for establishing priority rankings in a GPPA can 
be manyfold. On one hand, we may have the need for functional differentiation of service classes. In this 
direction, instruction cache-line refills should be prioritized over data transfers not to stop execution, 
especially in an architecture where we have long physical paths to achieve the centralized L2, while data is 
predictably stored in local scratchpad memories. On the other hand, some inter-core or inter-cluster 
communications might be more critical than others based on the software knowledge of their exact meaning 
in the context of the application. Finally, priorities may be a way of fixing topology-dependent unbalancing 
effects, such as the case presented in Figure 30, by enhancing the priority of poorly served packet flows. At 
the same time, control packets associated with platform management (e.g., reconfiguration directives) clearly 
deserve a dedicated service class.  
In vIrtical, a priority-class round robin arbitration policy was therefore developed and used, consisting of 
two-step arbitration: on the first step, requests are simply filtered based on their priority level. Then, round-
robin is applied in case multiple concurrent requests exhibit the same higher priority level. The behavior is 
shown in the figures below. 

 
Figure 31: Arbitration in case of packets of different priority levels.  

 
Figure 32: Arbitration fairness within the same priority level. 

As shown in Figure 31, if the contention is between packets of different priority levels, the allocator gives the 
grant at packets with the highest priority, so they reach the output port first. The lower priority packets, 
instead, are stalled until the end of high priority traffic.  
Figure 32 shows the case the traffic packets are at the same priority. In this case the allocator gives grant 
according to the classic RoundRobin policy that, in its basic form, is a simple scheduling, allowing each 
requestor an equal share of the access in a limited processing resource in a circular order.  
 
From an implementation standpoint, to ensure the correct operation, we extend a Round-Robin based 
baseline arbiter replicating all the state registers of the arbiter on a per-priority basis. We also add a specific 
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algorithm to detect the priority of incoming packets, selecting the proper range of bits (3 bits needed to 
create 8 levels) out of the header flit of the packet, and furthermore, a state variable that stores the current 
priority level. In this way the requests, received by an arbiter, are filtered by the priority levels, serving first 
the highest level. So using this sort of priority detector, the contention for the grant is only about requests of 
the highest priority packets, then decreasing to lower levels. When there are no requests of higher priority, 
the contention passes to lower level requests. 
Still using the state variable, the arbiter updates only the future value of new pending requests for a specific 
priority level, ensuring the maintenance of the classic RoundRobin circular order, but specifically for each 
level. Every request and pending request vector is replicated once for each priority level. 
In order to set priority traffic in the system, we enrich the information of a packet adding a 3-bit QoS field 
embedded in each header, this way enabling up to 8-level priority schemes to classify different types of 
traffic within the system. Thus the level 0 has lowest priority and level 7 is the most prioritized (see Table 2). 
 

PRIORITY LEVELs Bits encoding 
0 (lowest) 3 ‘b000 
1 3 ‘b001 
2 3 ‘b010 
3 3 ‘b011 
4 3 ‘b100 
5 3 ‘b101 
6 3 ‘b110 
7 (highest) 3 ‘b111 

Table 2: QoS encoding on header packets. 
 
Using this priority assignement with 8 levels, we intend to serve both user-specified and 
architecture/topology-dictated priorities. The former ones are associated to the QoS requirements of the 
application (e.g., achieving a given processing rate), while the latter ones are associated to functional 
requirements (e.g., a low-latency platform configuration) or to structural imbalances (e.g., topological 
imbalances).  In the next  subsection, some experimental results are presented. 

5.1.1. Validation of the arbitration policy 
 
Now we present some functional validation tests of the priority-class round robin arbitation. The first 
experiment refers to arbitration inside a single network switch. Experiments were performed with an RTL-
equivalent cycle- and signal-accurate SystemC simulation environment. 
 

 
Figure 33: (a), (b), (c), (d): validation tests about the accurancy of a switch scheduling algorithm with priority 

class round-robin policy. The target output port is south (S), and the actual transmission rate at conflicting input 
ports is reported. 
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We consider a 5x5 switch where N, E, S, W, L are identifiers of north, east, south, west and local 
input/output port, supposing N, E, W  and L are transmitting packets that want to reach the S output port. 
Based on packet priority we can have the following cases: 
 

- Figure 33 (a): local input port is transmitting high prioritized traffic in a continuous way (“continuous” 
means that there is no idle time between a packet and the next one). So, even though north, east 
and west port want to transmit their packet throught the south port, the arbiter contention is won by 
prioritized traffic and the output port is reached only by traffic from local input port. 

 
- Figure 33 (b): we suppose local, east and west input port have the same high priority level, and 

continuous traffic (north has lower priority packets). So the arbiter gives grant in a circular way to 
these ports, according to classic R-R policy, simply filtering the port with low priority traffic. 

 
- Figure 33 (c): if all the input ports (N, E, W, L) have traffic at high priority level the whole arbitration 

behavior is aligned to a baseline Round-Robin scheduling and there is fairness about getting the 
grant  between all input ports that are transmitting. 
 

- Figure 33 (d): this is a particular case of situation shown in Figure 33 (a). In this case we consider 
local input port with high priority traffic and east port with a lower one (north and west port are not 
transmitting). If the idle time between packets of the higher level is enough to allow the trasmission 
of a packet of lower level, the situation is balanced as shown in the figure. In particular, considering 
packets composed by 3 flits-per-packet (header, payload and tail), the situation proposed is obtained 
considering idle time (x) 1 ≤ x ≥ 6. If there is no idle time the situation is the same of Figure 33 (a), 
else if x > 6 the graph will be unbalanced in favour of traffic from the east input port. 

Now we consider a larger scenario, a whole 4x4 NoC composed by 16 5x5 switches (north, east, south and 
west ports plus the local one connected to the master for switches between 0 to 14, and to the slave for 
switch 15), as shown in Figure 34. This scenario resembles the instruction cache refill network in the GPPA. 
 

 
Figure 34: A 4x4 NoC composed by 5x5 switches. Red arrows indicate the routing restrictions provided by the 

routing bits (RBITS) of the LBDR mechanism. 

We consider fifteen masters and one slave, connected to the local port of switch 15. All the masters inject 
traffic in the network, asking to reach the slave. As already argued in Figure 30, in this topology there is an 
unbalanced allocation of bandwidth because of the switch position in the topology itself: for instance, it’s 
obvious that traffic injected by master 11 e 14 is privileged over any other, because of their position closer to 
the final destination.  
Considering every master is injecting packets with the same priority level, with idle time between a packet 
and the next one of 25 clock cycles, stopping the simulation after 1000 packets arrived at slave 15, the 
results we obtain are shown in Figure 35. 



 

 

 

 
Figure 35: the graph shows how many packets have access to slave_15 after 1000 packets 

arrived, specifying on the x-axis their source master. 

As we can see, this is a very unbalanced situation, and in the GPPA this would mean that some 
cores/clusters get more instructions to execute than others, causing a general execution 
misalignment.In order to restore fairness, we inject a prioritized traffic, increasing the packet 
priority of masters that are discriminated by their position. When we consider increasing priority 
as a function of the distance from the destination, then we get the fair bandwidth allocation of 
Figure 36.  It should be observed that the achieved fairness also depends on injection rate. 
Clearly, high-priority nodes with high injection rates end up starving the others. However, this 
issue is mitigated by the traffic types that are served by the NoC in a GPPA. In fact, traffic flows 
concern cache-line refills and inter-cluster communications, that are relatively unfrequent 
events. For this reason, at this time we did not consider it worth taking the proper course of 
action against starvation. Later, upon actual GPPA implementation, this assumption will be 
validated and the architecture improved if needed (for instance, through virtual channels).  
Finally, it is worth recalling that the large number of priorities we implemented (8) is such 
to suffice both for this kind of topology effects for the typical scale of a GPPA, but also to 
get some performance differentiation based on application criticality, and to get special 
service classes for control messages.  

 

 
Figure 36: Fair bandwidth allocation through priority assignment. 

5.1.2. Implementation overhead 
 
Finally, in this section, we present the experimental measurements we performed on two 5x5 
switches. The first switch makes use of an arbiter without any priority-class round robin support, 
while the second one implements the service classes. The reader should recall that the 
xpipesLite switch is considered as the baseline architecture, and that in this VC-less 
architecture one allocator is instantiated for each output port of the switch.  
The measurements have been performed by synthesizing (with Design Compiler) both switches 
at max performance. We used a low-power, standard Vth 40nm industrial technology library 
(Vdd=1.2V) and we measured the area and the critical path delay. 
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(a)                                                     (b) 

Figure 37 (a) Normalized area overhead at the switch level; (b) Normalized area overhead at the 
allocator level. 

 
Figure 38: Normalized critical path delay overhead at the switch level. 

Figure 37 shows normalized area overhead of switches (left side) and arbiters (right side). From 
Figure 37, it appears that the total area of the switch with priority-class round robin is 15% larger 
than that of the switch without any QoS support. This increase is due to the increased control 
logic implemented in the allocator, to the large number of supported priorities, and mainly to the 
need of replicating the allocator state on a per-priority basis. When we consider the allocator-
level report, this overead is tangible. On the other hand, it is worth recalling that the xpipesLite 
switch used for comparison is the most lightweight switch one can ever find in a NoC, with just 
simple network functionality. Should the switch complexity grow (e.g., fault-tolerance, testing, 
runtime reconfiguration), then this overead would be rapidly absorbed.  Also, with respect to the 
GPPA as a whole, it is reasonable to expect that the NoC has a marginal impact over the total 
area footprint.  
As regards the critical path delay (see Figure 38), the switch with priorities is 27% slower than 
the reference one, since the allocator extensions go on the critical path. Overall, we could say 
that most of the overhead comes from the decision to enforce fairness among packets of the 
same priority class, not from the support of priorities themselves. 
 

 

5.2. Flow-level soft-QoS through message-class VC allocation 
 
As described in section 3.5, global network traffic in the GPPA (e.g.,for instruction cache line 
refills) could be accommodated in the on-chip network without any virtual channel, provided the 
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routing algorithm for the local partitions and for the global communication does not change (only 
connectivity bits change). From a QoS perspective, this architecture design point can be 
extended with virtual channels just at the same for specific performance optimization goals. In 
practice, in vIrtical we will consider two virtual channels in order to reduce the interaction of 
intra-partition and L2 global traffic to NoC links only. One virtual channel (VC0) is used for intra-
partition communications, while the second one (VC1) is used for L2 signaling. VC1 will also be 
used by the master port of the top-level NoC (the STMicroelectronics' STNoC) to write code and 
data to the L2 of the GPPA and/or data to the culster scratchpad memories. Some solutions in 
the high-performance computing domain (e.g., the Tilera manycore processor) opt for the 
extreme approach of full network replication, with each network dedicated to a specific traffic 
class. We do not go that far, since GPPAs lie at the boundary between SoCs and chip 
multiprocessors, and resource budgets are still constrained in this domain. In this context, we 
prefer to retain unified network links between the two virtual networks, while optimizing for their 
bandwidth exploitation through the virtual channel solution.  

A further increase in the number of virtual channels may be due to deadlock avoidance issues. 
In fact, traffic toward the L2 consists of memory requests and memory responses, which is 
subject to protocol-dependent deadlock. The simplest workaround for this problem consists of 
having 1 virtual channel for memory requests, and another one for memory responses. For 
intra-partition communication, this is not the case, since it is in principle possible to have one-
way communications only between clusters. As an effect, in the GPPA we currently envision 
3 virtual channels: 

- 1 for intra-partition communications 

- 1 for memory requests to the L2 

- 1 for memory responses from the L2 

5.2.1. Multiswitch virtual channel implementation 
In vIrtical, we use a simplified yet efficient implementation of virtual channels.The conventional 
implementation style of virtual channels consists of multistage arbitration. Let us focus on the 
following extension of the xpipesLite switch taking this approach to implement virtual channels.  
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Figure 39: Multistage implementation of a virtual channel switch (2 VCs are showed). 

For the sake of simplicity, the focus of this section is restricted to statically allocated Virtual 
Channels (VC) and to deterministic routing algorithms.The switch input port receives the virtual 
channel identifier (ID) together with the flit from the upstream switch. This ID is used to select 
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the virtual channel where arriving flits must be stored (Figure 39). Also, a stall signal is 
generated by each virtual channel and propagated upstream to the attached output port to notify 
availability of buffer space on a per-VC basis. Each virtual channel implements its own buffering 
space and a very simple LBDR decoding logic that computes the target output port. Switch 
allocation is performed immediately after the flit arrives, and the routing information is used to 
identify the intended switch output port. VCs are assigned nonspeculatively after switch 
allocation: the winning VC that is granted access to a given output port automatically reserves 
the VC with the same ID at that output port. This is because VCs are statically allocated. As will 
be clarified shortly hereafter, it can never occur that a VC is granted access to an output port 
and the intended VC at that port is occupied. 
Switch allocation can be performed with a separable input-first allocator. Since allocation 
requires 2 stages of arbitration we call it the multistage architecture. One rule that is enforced 
during switch allocation is that a flit, either head or body flit, can only win the arbitration in the 
first stage if it requests an output VC that has free buffer space and is not in use by another 
input VC. In practice, the first stage arbiter filters the requests for nonfree output virtual 
channels. This way, it is not possible to waste a cycle by selecting a winner in switch allocation 
that will find its target virtual channel reserved or with no space. To provide fairness among all 
the input virtual channels, if the winner of the VC arbiter does not win the port (second-stage) 
arbitration, it receives the highest priority in the virtual channel arbiter. This guarantees that the 
last winner will be proposed again as soon as possible. 
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Figure 40: Multiswitch implementation of a virtual channel switch (2 VCs are showed). 

 
 
An alternative VC switch architecture consists of replicating not just buffers per channel, but 
rather the entire baseline VC-less switch as many times as the intended number of virtual 
channels (Figure 40). Replicated switches then share the same physical input and output links, 
similar to what conventional VCs do, but with the main difference that in the new implementation 
VCs have their own access to a replicated crossbar and the first stage of arbitration can be 
finally removed. This solution will be denoted as the multiswitch VC implementation. The 
underlying principle is simple: instead of replicating buffering resources inside a switch, the idea 
is to replicate the baseline VC-less switch without impacting its internal critical path. Similar to 
the multistage architecture, also this solution requires an additional stage of link arbitration in 
order to multiplex the outputs of the baseline VC-less switches into the same physical output 
links connecting to downstream switches. As Figure 40 indicates, this stage is cascaded to the 
replicated VC-less switches it arbitrates on a flit-by-flit basis while the arbiters of the replicated 
switches keep arbitrating at the packet level. Interestingly, delay of this arbitration stage does 
not add up to that of the VC-less switches to determine the critical path, since they are 
separated by a retiming stage (the switch output buffers). In practice, the critical path of the 
multiswitch architecture is the same of a VC-less switch, since it does not make use of a 
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multistage arbiter. However, one might argue that this comes at the cost of replicating more 
physical resources (e.g., the crossbars). At this point, a basic principle of logic synthesis comes 
into play and leads to opposite conclusions. When comparing the multistage with the 
multiswitch VC implementations, this latter has less functions on the critical path, hence 
potentially resulting in a more area/power-efficient gate-level netlist after logic synthesis. In fact, 
the multiswitch architecture certainly provides a higher maximum speed than the multistage 
one. However, if we require the two architectures to be aligned to the speed of the slowest one 
(the multistage), then combinational logic of the multiswitch design can be inferred with relaxed 
delay constraints and therefore thoroughly optimized for area and power. In practice, a different 
design point along the area-performance optimization curve can be inferred. 
 

 
Figure 41: Multiswitch VC switch of the GPPA, with control network for selective virtual 

channel reconfiguration. 

5.2.2. Specialization for GPPA 
vIrtical will adopt the multiswitch implementation of a virtual channel architecture. When 
considering the distinctive features of the GPPA, we end up in the final architecture of Figure 
41, which is a novel contribution of vIrtical. The figure shows a virtual channel switch, 
implemented by VC-less switch replication. At this point, it is worth recalling that VC0 is used for 
intra-partition messaging only. As such, this is the only virtual channel that needs to implement 
the runtime reconfiguration of the routing function. In fact, the number of partitions change over 
time. In contrast, the other virtual channels enable global traffic, hence its routing function does 
not undergo any runtime reconfiguration (unless we want to consider the possibility of dynamic 
rerouting to account for possible malfunctions that might show up at runtime). Given that, the 
figure shows a control network which is connected only to the top virtual channel: it brings the 
control signals of the OSR-Lite reconfiguration mechanism, selectively to the intended virtual 
channel/VC-less switch. As dictated by section 3.5, the three VC-less switches might have the 
same routing restrictions but different connectivity bits. However, in the more flexible 
scenario of section 3.6, the three switches might actually work with different routing 
restrictions as well. In fact, the proposed architecture already routes local and global traffic 
across different virtual channels, hence preventing the occurrence of deadlock due to mixing up 
of packets with different routing algorithms in the same buffers. Whenever full bandwidth 
reservation needs to be delivered (see section 5.3), then the architecture in Figure 41 still holds 
provided VC0 has its own links in addition to buffers. In practice, we would need a multi-network 
solution, as illustrated shortly hereafter. VC1 and VC2 would then belong to a separate network 
than the one of VC0. 

Finally, the output arbiters were set to implement the following arbitration policy: 
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- when conflicting packets from VC0 and VC1/VC2 have the same priority, VC1/VC2 is 
prioritized (to enable prioritized instruction cache line refills) 

- when conflicting packets from VC0 and VC1/VC2 have different priorities, then the VC with the 
highest priority is prioritized.  

Table 3. Area and power overhead of VC implementation styles. 

5.2.1. Implementation overhead 
The issue is to determine whether the area savings achieved by logic synthesis are enough to 
compensate for the larger amount of hardware resources that are instantiated in the multiswitch 
architecture, especially the replicated crossbars. Please observe that the multistage and the 
multiswitch architectures can be designed to instantiate the same overall amount of buffering 
resources: N VC queues in the multistage switch are equivalent to a single queue in N 
replicated switches. Table 3 summarizes the area/critical-path of two 5x5 virtual channel switch 
(VC multiswitch and VC multistage) synthesized with the same 40nm technology library. The 
designs were synthesized at their maximum performance first, then the delay constraint was 
gradually relaxed, thus getting area/critical path results as illustrated in Table 3. From the 
column five of Table 3, it appears that the multiswitch architecture can achieve a higher speed 
(29%) than the multistage one since it implements less control functions on the critical path. 
Therefore, the physical synthesis tool can reduce the area of this design by 14% while relaxing 
its performance constraints. It is then possible to match the same maximum speed of the 
multistage architecture, while incurring a lower area, since the area scalability process for the 
internal combinational logic (e.g., the crossbar) is very effective. The area saved by the 
multiswitch amounts to roughly 9%. Most of the extra area of the multistage comes from its 
combinational logic (43% with respect to the multiswitch one). The second and the third 
columns show respectively the area breakdown of combinational and sequential logics of both 
switches at max performance. For high performance applications, the multiswitch VC results to 
be the best choice since it is able to run at higher frequency than the multistage one. Moreover, 
when the multiswitch is relaxed and runs at the same operative frequency of the multistage one, 
it leads to save approximately 9% of the area. 
 

5.3. Full bandwidth reservation 
Circuit switching is easier to implement in our target GPPA than in standards NoCs because no 
setup/teardown procedures are required: once a partition is configured, circuits inside that 
partition can be automatically pre-configured as well, and run till completion of the partition. 
Given the implementation mechanism of circuits we will propose, circuits can be 
dynamically allocated or tore down at partition runtime exclusively by means of runtime 
reconfigurations of the routing function (OSR-Lite based, in our case). 
 

 
(a)                                                                (b) 

Figure 42: (a) visibility of A, to which a circuit is reserved, vs. (b) visibility of the other nodes. 
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Observing Figure 42 (a) and (b), the key philosophy we adopted to implement circuit 
switching emerges, that is viewing reserved links and buffers in the same way as broken, 
hence unusable components, except for the traffic flow which the circuit is dedicated to. 
Viewing a circuit “as broken links” means that the connectivity bits of the adjacent switches are 
set to zero, so they don’t consider the path through the circuit reserved resource in their routing 
computation. Only the switch A can “view” the link as non-broken. In practice: packets issued by 
A and heading to the destination served by the circuit, should be routed across the circuit. All 
other packets, although heading to the same destination, should be routed elsewhere.  
From an implementation standpoint, we get an overhead of 11 additional bits for each input 
port, needed to expand the LBDR routing mechanism: if the destination the packet wants to 
reach is the circuit destination (coded by the 11 bits), the routing logic forces the output port 
expected by the circuit (coded by the 11 bits), else the packet is routed through other output 
ports because the link is seen as broken. 
8 bits are used to encode a destination address (4 for the y-axis coordinate and 4 for the x-axis 
coordinate) and 3 bits to give the information about the output port the packet has to be sent (3 
bits are enough because we are considering a 5x5 switch). 
Please notice that, similarly to the case where a link or a switch sub-block is excluded from 
routing paths because it is defective, also in this case the insertion of a circuit affects the routing 
algorithm of the partition the circuit is inserted into. That is, routing paths should not go through 
the reserved circuit.  If the partition is created on top of idle resources, the algorithm will be 
custom tailored  to accommodate the circuit from the ground up. If a circuit is created at runtime 
in a running partition, then the algorithm should be reconfigured through the OSR-Lite process. 
Ultimately, this requires a selective modification of routing bits and connectivity bits, where 
thanks to OSR these changes can be operated without draining network traffic. This brings to 
the key novelty of the vIrtical approach: the establishment of a circuit at runtime is 
equivalent to the runtime reconfiguration of the routing function.  
In terms of architectural implications, circuit support impacts the virtual channel 
architecture in Fig.41. In fact, circuits would be established across the input/output 
connections of VC0 switches (those used for inter-cluster/intra-partition 
communications). At the same time, corresponding inter-switch links would be reserved. 
However, such links are shared with virtual channels for global traffic (VC1 and VC2), 
which would experience blocking for the time of circuit reservation. To prevent this, the 
solution is twofold: 

- we may enforce runtime reconfiguration of the routing function of VC1 and VC2 
as well, unlike Fig.41. This way, the link is seen as “broken” by all virtual 
channels, which would then implement the suitable course of rerouting action. 

- we may design two different networks: one for intra-partition communication (i.e., 
VC0 would become a separate network by adding inter-switch links), and one for 
global traffic (which may still implement virtual channels for requests and 
responses). This way, full bandwidth reservation on one network would not affect 
the other network. At the same time, the global network would not need to 
support runtime reconfiguration of its routing function, thus following the 
philosophy of Fig.41. 

5.3.1. Functional validation 
 
To validate our implementation we propose the test in the figures below. 
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                   (a)                                                        (b)                                                            (c) 
Figure 43: Runtime reconfiguration to enforce a circuit. (a) Master M1 is active and is transmitting 

packets destined to slave connected to switch 3. (b) M0 starts to inject traffic with switch 7 as 
destination, so routing algorithm routes this traffic through the path of traffic from M1. (c) After a 
reconfiguration a circuit is enforced: traffic from M0 changes the routing path because it sees the 

link as reserved. 

 
We consider a runtime reconfiguration to enforce a circuit. As shown in Figure 43 (a) master M1 
starts to inject traffic to slave connected to switch 3. Figure 43 (b) shows when also M0 starts to 
inject traffic to slave 7 as destination: in this case the traffic is routed to the M1 traffic path and 
so participates to a Round-Robin scheduling (no packets priority is specified) and the grant is 
given in a circular way. After a runtime reconfiguration with the OSR-Lite mechanism, as shown 
in Figure 43 (c), a circuit is created between switch 1 and switch 3 and so the link reserved to 
M1 traffic because the other switches consider the link as reserved/broken (we set to zero 
specific connectivity bits of LBDR-bits to mimic the fault). At the same time, through OSR 
routing bits are selectively modified to accommodate the new routing paths resulting from the 
exclusión of the reserved circuit for most cores.  
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Figure 44: according to Figure 43 (a), (b), (c) we show in red the latency of M1 packets and in 

blue/yellow the arrival time of packets from M1 with a runtime reconfiguration to create the circuit 
and without the circuit. 

 
The experimental results reported in Figure 44 show latency and arrival time of packets from 
master M1. We note that in (a) latency is minimal and constant and also the gradient of the 
arrival time curve, because there is only M1 injecting traffic. In (b), when also M0 starts to inject 
traffic,  the gradient and the latency increase because of the contention (to reach the south 
output port in switch_1) between local port traffic (traffic from M1) and west port traffic (traffic 
from M0). In (c), after a runtime global reconfiguration, obtained by OSR-Lite, the graph shows 
a decrease of the gradient of the curve and a latency that returns to the level seen in (a) 
because the instauration of the circuit allows packets from M1 to go directly to slave of switch 3, 
without Round-Robin scheduling: the path is reserved by creating the circuit. Accordingly, the 
traffic from M0 is routed through another path, because the link is seen as broken. 
Noteworthy, the time needed by the reconfiguration to create a circuit is absorbed very soon 
because the gradient of the curve decreases: in Figure 44 we can see in yellow the arrival time 
if there is no reconfiguration. It mantains a higher gradient, because of  the arbiter contention, 
and intersects the blue curve, thus giving users the reference for convenient reconfiguration. 
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5.4. QoS-aware Runtime Reconfiguration 
We consider now the reconfiguration process. As the reader may recall from the OSR-Lite 
mechanism, the reconfiguration process involves the whole network, and the whole traffic 
running over it. A switch, waiting for the token arrival, stalls the new traffic and only when the 
token arrives and gets forwarded through an output port, it proceeds to processing new packets 
through that output port. So if there is running traffic, a switch is to some extent affected by the 
reconfiguration process, though there are no changes to the configuration of its specified 
LBDR_bits. This questions the possibility of meeting QoS constraints in an operational 
environment where lots of runtime reconfigurations take place. To give an applicative 
example, we consider the figure below. 

 
Figure 45: running traffic in a partition "A" of the network, involved by a reconfiguration process 

done to create another partition "B". Red arrows represent routing restrictions of the network 

Figure 45 shows a 4x4 NoC where there is running traffic. In particular we consider a specified 
partition (partition "A"), composed by switches 0,1,2,3, where master M0 is injecting traffic in a 
continuous way to reach slave S3. If we want to create a new partition "B" (for example 
including switch 8,11,14,15), launching a new OSR-Lite reconfiguration process also the 
running traffic in the first partition will be affected to some extent. In principle, this should not be 
required because nothing changes in the LBDR_bits configuration of the running partition "A".  
Figure 46 shows how running traffic in partition "A" is affected by a global reconfiguration 
process vs. an ideal local process to partition “B”. This is the result of an RTL-equivalent 
SystemC simulation. 
 

 
Figure 46: Running traffic in partition “A” involved by a global reconfiguration process (blue) vs 
local reconfiguration process (red) upon new partition creation. The plot shows the arrival time of 
packets to their destination. On the x-axis there is the packet identifier. 

 



 

 46 

We can clearly see that arrival times are affected in a very significant, although localized, way 
because switches involved by the reconfiguration process have to wait for the token. In 
particular the reconfiguration process impacts switch_0 for about 46ns (considering 1ns = clock 
cycle). 
The solution to this problem is local reconfiguration that, as we can see in Figure 46 (red 
curve), does not affect the existing partition and its running traffic. Indeed, the reconfiguration in 
this particular case should concern only switches of future partition "B" because it's here where 
routing configuration bits change. 
The mechanism behind local reconfiguration we implement in our network is very simple. We 
give new LBDR_bits and LBDR_en (enable signal to inform the switch that LBDR configuration 
is changing) only to switches involved by the new partition but at this point an evolution of 
switch reconfiguration control logic becomes necessary since the token propagation must be 
limited to the new partition area. 
The figure below shows the logic behind the performed modification. 

 
 

 (a) 
 

 
(b) 

Figure 47: improvements of logic behind (a) epoch_input, (b) epoch_output, to control token 
propagation in case of local reconfiguration. 

 
In Figure 47 (b) we consider the simple way of constraining token propagation. Simply, 
considering epoch_out as the signal that represents the token propagating signal in the baseline 
solution, now we filter it with an AND gate and Cbit signal, that represents the connectivity bit 
that give the information about the presence of an active link between two interconnected 
switches: effective_token_out signal goes high (effective_token_out = 1) only if epoch_out = 1 
and Cbits = 1, so there is an effective token propagation only if there's a valid link that connects 
the output port to another switch. In contrast, in a boundary switch, or when the output port is 
toward a partition edge, the token propagation is blocked. 
In Figure 47 (a), instead, we consider part of the OSR-Lite logic that controls epoch transition 
for partition boundary switches. Considering switch_epoch the signal that goes high when the 
LBDR enable is sent (i.e., new LBDR bits received from the control bus), the key idea is to mask 
the token_in signal by an AND block with Cbits, and in the same way to filter switch_epoch with 
the negation of Cbits. So if a token arrives (token_in = 1) and input port is linked to another 
switch (Cbits = 1), the token passes. The OR block, instead, is useful to maintain the correct 
behavior of the logic: if a token arrives from an active link or there is a pending reconfiguration 
(LBDR_en enabled, so switch_epoch = 1) and the port has no connection (!Cbits = 1) the 
effective_token_in signal goes high. So the switch port sees an effective token if there is a valid 
token_in (from an active link) or if a reconfiguration is launched and the port is not actively 
connected. 
The conclusion of updates of epoch_input and epoch_output is that the token 
propagation is effectively limited to the part of the network where we want to create a 
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new partition: a non-valid token in input is not considered, a non-valid token in ouput is 
absorbed by the partition edges, so local reconfiguration becomes possible. 
These improvements allow also a local reconfiguration applied to an existing and running 
partition, ensuring that will be limited to its switches. This can be the case of a change of routing 
algorithm, of the dynamic setting of a circuit, of working around a faulty link. Local 
reconfiguration for a running partition is more efficient than a global one, as shown in the 
experimental test represented in figure below. 

5.4.1. Functional validation 
 

 
Figure 48: Running partition reconfiguration: running traffic involved by a global reconfiguration 
process (orange) vs local reconfiguration process (green); arrival time of the packets to their 
destination is showed. 

Let us consider a scenario similar to Figure 45. If a new partition “B” is allocated, then with the 
proposed approach traffic inside “A” is not impacted. Therefore, let us consider the more 
interesting scenario where only partition A is running, and its routing function needs to be 
changed at runtime via an OSR-Lite reconfiguration. Figure 48 shows how arrival times of 
running packets in partition “A” are improved by reconfiguring the same running partition "A" 
locally: if we set a global reconfiguration process, traffic blocking is correlated with the 
reconfiguration of the whole network, while a local partition implies token propagation only 
inside the partition under reconfiguration. In particular, traffic at switch_0 is stalled for about 
12ns during local reconfiguration, as opposed to 46ns during global reconfiguration, highlighting 
a very significative improvement of about 72%. 
 
Considering the whole new outline, OSR-Lite allows not only global reconfiguration but it 
is also useful to set intra-partion reconfigurations, necessary to bypass a broken link, to 
create a circuit and to change the routing algorithm of a running and existing partition, 
without affecting other partitions, and minimizing the reconfiguration transient.  
Moreover it can be used to create new partitions from idle resources, too, in case of 
loose synchronization with the software. In fact, assuming idle resources, there are two 
options. On one hand, the network manager might configure the routing mechanism of the 
network section involved by a new partition, and once finished trigger software execution on 
partition IP cores. In this case, token propagation is not strictly needed, since there is no 
ongoing traffic. On the other hand, there might be loose synchronization: IP cores try to inject 
traffic regardless of the state of the network. This latter, in turn, will prevent such traffic injection 
at its switches via backpressure until they progressively mígrate to the new epoch. In this case, 
not all the switches start collecting packets at the same time. OSR-Lite would be the indirect 
synchronization mechanism between network state and IP core execution in this scenario. 
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5.4.2. Dual-network design for high-performance reconfiguration 
Until now, referring to OSR-Lite reconfiguration, we considered every LBDR_en provided in a 
synchronous way, i.e. at the same time for all the switches of the NoC. This was done since the 
focus was on functional validation. 
In this subsection we relax that assumption and consider a more realistic setting, where control 
bits of the OSR-Lite reconfiguration process are brought by a dual network. Such a dual bus 
may be another 2D mesh superimposed to the main one, however this would be too much of an 
overhead. We more realistically envision a global ring topology connecting all the switches of 
the main NoC in a row. A global GPPA manager is one node of the ring, and also closes it. 
The interesting issue that we intend to address here is that the ring may connect the switches of 
the main NoC based on different patterns. The issue to investigate is which of these patterns 
best matches the token propagation pattern of the OSR-Lite mechanism.  

 
(a)                                                                    (b) 

 
                                                          (c)                                                                         (d) 

 
Figure 49: different paths to provide LBDR_en by dual-bus. (a),(b) are routing inefficient paths; (c), 

(d) are layout aware paths. Green arrows show the starting point and the direction of each path. 

 
As Figure 49 shows, we provide the OSR control bits to the switches using four different paths. 
The yellow (a) and (b) paths are theoretically sound but in practice they end up in very 
inefficient implementation. In fact, the return path of the link would be most probably multicycle 
in 40nm technology (and below), due to the its long length. Pink paths (c) and (d) instead are 
layout aware paths. 
Figure 50 shows the experimental results measuring the global reconfiguration time of the 
whole network (as though the whole network was a unique, global partition that gets 
reconfigured on-the-fly), according to different paths proposed in Figure 49. Let us recall that 
what changes in all cases is the order in which OSR control bits are fed to the switches of the 
main NoC. 
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Figure 50: reconfiguration time with dual networks of kinds (a), (b), (c), (d) of Figure 49, 

compared and normalized with respect to the ideal, synchronous feeding of OSR control signals.  

 
 

The best case is the synchronized one (75nsec considering a clock period of 1nsec), although 
irrealistic. This would imply the possibility of inferring a single cycle one-to-many connection 
between the global manager and all network switches. Yellow path (a) turns out to be the most 
efficient one, since it tries to match as much as possible the token propagation pattern across 
the network. This pattern is especially convenient for top left partitions, since LBDR_en signal 
that causes a new_epoch arrives closest to the arrival of all the token_in signals for those 
switches: new_epoch packets are stopped for a smaller time. In case yellow path (a) could not 
be physically implemented, then pink path (c) is the closest to it, both from a shape and hence 
from a performance viewpoint.  
 
 
 



 

 50 

6. Conclusions 
 

To optimize performance, predictability, and energy efficient operation of virtualized 
heterogeneous multicore systems for dynamic application workloads, new runtime techniques 
are required based on monitoring components deployed at critical system locations. This report 
describes a set of hardware monitoring components developed for a heterogeneous SoC 
architecture which enable the synergistic hardware and software extensions for dynamic system 
adaptation.  

Innovative hardware-level enhancements and corresponding design methodologies at different 
system layers can advance virtualization technology by alleviating software overheads, leading 
to sophisticated hypervisor enhancements supporting not only basic global shared address 
translation, but also runtime system monitoring and control, dynamic power management, 
shareability, system-wide cache coherence and a well-defined memory consistency model, 
thereby ultimately exploiting the high performance capabilities of the underlying physical layer. 

In addition to monitoring services, partitioning and reconfiguration support has been also 
reported. By partitioning, the hypervisor will be able to assign different sets of GPPA resources 
to running applications, thus providing the required isolation effect of a virtualized system. Also, 
runtime reconfiguration has been reported, in which the underlying NoC of the GPPA will be 
reconfigured with minimal impact on running applications. 

Finally, this deliverable has reported on the successful development of a soft QoS package, 
including packet-level, and traffic flow-level QoS guarantees, up to the reservation of circuits. 
QoS provisions have been specifically conceived for the GPPA of the system. Packet-level 
provisions consider the differentitation of traffic types in the network, but also the specific 
requirements of control signaling or the traffic imbalances naturally found in topologies, thus 
justifying a priority ranking. Within the same priority class, round robin is arbitration is preserved. 
Also,  conflicts between traffic to L2 and intra-partition traffic is limited to NoC links only by 
means of virtual channels, that at the same type deliver maximum link bandwidth exploitation. 
Finally, the synergy between the NoC architecture and the centralized software controller 
enables the reservation of circuits in the network without suffering from the overhead for path 
setup and teardown. Bandwidth reservation ends up being very similar to traffic rerouting 
around a faulty link. Finally, the interdependencies between runtime network reconfiguration 
and delivery of QoS over time has been considered. In this direction, local reconfiguration 
schemes are proposed, that tweak the token propagation mechanism of OSR-Lite. Also, the 
most suitable ring topology patterns are analysed to best match the token propagation pattern in 
the main network of the OSR-Lite runtime reconfiguration mechanism. 
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