

Grant Agreement number: 288574

Project acronym: vIrtical

Project title: SW/HW extensions for virtualized
heterogeneous multicore platforms

Seventh Framework Programme

Funding Scheme: Collaborative project

FP7 -ICT -2011-7

Objective ICT-2011.3.4 Computing Systems

Start date of project: 15/07/2011 Duration: 36 months

D 1.1 Acceleration, memory system opportunities, and virtualization requirements in

selected industrial applications

 Due date of deliverable: Month 12

Actual submission date: Month 14

Organization name of lead beneficiary and contributors for this deliverable: THALES, UPV,
UNIBO, STM
Work package contributing to the Deliverable: WP1

 Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission

Services)

RE Restricted to a group specified by the consortium (including the
Commission Services)

CO Confidential, only for members of the consortium (including the
Commission Services)

APPROVED BY:

Partners Date

ALL September 4th 2012

 2

Index
Index .. 2
Abstract ... 3
Glossary (Please ensure that any acronyms used are clearly explained) 3
Full Description of Deliverable content .. 4
1. Introduction .. 4
2. Analyzed Applications .. 4

2.1. Applications for consumers ... 4
2.1.1. Android ... 5

2.2. Applications for telephony, data clustering and cryptography .. 6
2.2.1. Asterisk .. 6
2.2.2. KCluster ... 7
2.2.3. OpenSSL .. 8

2.3. Applications for Vision and Image Processing ... 8
2.3.1. SIFT.. 9
2.3.2. SURF ... 9
2.3.3. FAST + BRIEF ... 10

3. Acceleration opportunities .. 11
3.1. Acceleration opportunities for telephony, data clustering and cryptography applications 12

3.1.1. Asterisk .. 12
3.1.2. KCluster ... 12
3.1.3. OpenSSL .. 13

3.2. Acceleration opportunities for Vision applications .. 13
3.2.1. Architecture Specific Optimizations ... 14
3.2.2. Coarse-Grained Thread-Level Parallelization .. 15
3.2.3. Fine-Grained Data-Level Parallelization .. 17

4. Memory system opportunities .. 24
4.1. Analysis Methodology ... 26

4.1.1. Target System .. 26
4.1.2. Simulation Tools ... 27
4.1.3. Trace Acquisition Methodology .. 29
4.1.4. Applications .. 31

4.2. Sharing patterns analysis ... 31
4.2.1. Analysis Results ... 32

4.3. Compression Opportunities .. 41
4.3.1. Analysis Results ... 43

5. Virtualization Requirements ... 52
5.1. Domain requirements ... 52

5.1.1. Telecommunications .. 53
5.1.2. Consumer Electronics .. 53
5.1.3. Automotive and Vetronics .. 58
5.1.4. Transportation .. 58
5.1.5. Avionics .. 58

5.2. Technical requirements .. 59
5.2.1. Isolation between compartments ... 60
5.2.2. Communications between compartments .. 61
5.2.3. Resource sharing and reservation among compartments ... 61
5.2.4. Static and dynamic resource allocation for compartments .. 64

5.3. Non-functional requirements... 65
5.3.1. Fault tolerance ... 65
5.3.2. Security .. 67
5.3.3. Co-existence of full virtualization and para-virtualization ... 68

 3

5.3.4. Performance ... 68
5.3.5. Other requirements .. 68

6. Conclusions .. 69
7. Bibliography ... 70

Abstract
Embedded devices are becoming more and more present everywhere. Moreover mobile

devices are becoming also more computationally powerful. These embedded architectures

present new challenges since they execute several applications that must preserve security,

allow sharing information in a coherent way, to be scalable and provide the required levels of

performance, while at the same time they must be power efficient.

In this context, the vIrtical project focuses on these challenges and as a starting point, it tackles

the characterization of applications targeted for the hardware platform developed in the project,

that is, a heterogeneous multicore SoC. For this purpose several typical industrial applications

and some computer vision kernels have been selected for characterization. From these

applications, we have first analyzed acceleration opportunities in order to identify which

computational kernels are best candidates for acceleration. Second, we have analyzed memory

sharing patterns in order to exploit them to make the coherence protocols more scalable and

power-efficient. Moreover we also have analyzed the compression opportunities offered by data

moving between memory and cores in order to design a more power-efficient platform. Finally

we also identify virtualization opportunities of industrial applications. As we show in this

deliverable in the next sections, industrial applications exhibit acceleration, memory and

virtualization opportunities that taken into consideration will enable the design of more efficient,

scalable and secure heterogeneous multicore devices.

Glossary (Please ensure that any acronyms used are clearly explained)

CC: Common Criteria

CV: computer vision

EAL: Evaluation Assurance Level

NoC: Network on Chip

PBX: private branch exchange

QoS: Quality of Service

SoC: System on Chip

VoD: Video-on-Demand

VoIP: Voice over IP

 4

Full Description of Deliverable content

1. Introduction
The use of computers has been extended to most areas of our everyday life. Embedded

devices are becoming more and more present everywhere. In the Internet, computational load

is moving from computers to servers, being clusters a very popular solution to provide the

required computing power. Moreover mobile phones, PDAs and in general mobile devices are

becoming also more computationally powerful since they are intended to perform complex

computations locally. These embedded architectures present new challenges since they

execute several applications that must preserve security, allow sharing information in a

coherent way, to be scalable and provide the required levels of performance, while at the same

time they must be power efficient.

In this context in the vIrtical project, we tackle these challenges, and as a starting point, we

characterize applications targeted for the hardware platform developed in the project, that is, a

heterogeneous muticore SoC. For this purpose Thales has provided us with a set of application

examples covering the industrial needs. Moreover, some computer vision (CV) kernels have

been also selected since scientific and industrial communities are showing a growing interest in

developing this kind of algorithms on embedded systems. All the applications are described in

Section 2. From these applications, we have first analyzed in Task 1.1 acceleration

opportunities in order to identify which computational kernels are best candidates for

acceleration (Section 3). Second in Task 1.3, we have analyzed memory sharing patterns

(Section 4.2) in order to identify opportunities to be exploited to make the coherence protocols

more suitable for embedded devices being more scalable and power-efficient. Moreover, also in

Task 1.3 we have also analyzed the compression opportunities (Section 4.3) offered by data

moving between memory and cores in the industrial applications, in order to design

compression techniques that enable a more power-efficient platform. Finally, in Task 1.1 we

have also identified virtualization opportunities of industrial applications.

2. Analyzed Applications

2.1. Applications for consumers
Smart set-top boxes often garner less attention than other connected CE devices like TVs and

game consoles. However, there is a growing interest in generic Android based set-top boxes.

The changing consumer landscape, however, could present a window of opportunity for smart

set-top boxes as more consumers allocate entertainment budget, both monetary and time, to

streaming media via the set top box. Today, we start to see on the market some examples how

mobile contents could be streamed via a set top box or how to play android games in a set top

box.

 5

2.1.1. Android

 From Wikipedia, Android is a Linux-based operating system for mobile devices such as

smartphones and tablet computers. It is developed by the Open Handset Alliance, led by

Google. Today, Android has a large community of developers writing applications ("apps") that

extend the functionality of the devices. Developers write primarily in a customized version of

Java. Apps can be downloaded from third-party sites or through online stores such as Google

Play (formerly Android Market), the app store run by Google. In June 2012, there were more

than 600,000 apps available for Android, and the estimated number of applications downloaded

from Google Play was 20 billion.

The software stack is divided in four different layers, which include 5 different groups:

• The application layer

o The Android software platform will come with a set of basic applications

like browser, email client, SMS program, maps, calendar, contacts and

many more. All these applications are written using the Java

programming language. It should be mentioned that applications can

be run simultaneously, it is possible to hear music and read an email

at the same time. This layer will mostly be used by commonly cell

phone users.

• The application framework

o An application framework is a software framework that is used to

implement a standard structure of an application for a specific

operating system. With the help of managers, content providers and

other services programmers it can reassemble functions used by other

existing applications.

• The libraries

o The available libraries are all written in C/C++. They will be called

through a Java interface. These includes the Surface Manager (for

compositing windows), 2D and 3D graphics, Media Codecs like

MPEG-4 and MP3, the SQL database SQLite and the web browser

engine WebKit.

• The runtime

o The Android runtime consists of two components. First a set of core

libraries, which provides most of the functionality available in the core

libraries of the Java programming language. Second the virtual

machine Dalvik, which operates like a translator between the

application side and the operating system. Every application which

 6

runs on Android is written in Java. As the operating system is not able

to understand this programming language directly, the Java programs

will be received and translated by the virtual machine Dalvik. The

translated code can then be executed by the operating system.

• The kernel

o A customized version of the Linux Kernel will be used by Android for its

device drivers, memory management, process management and

networking.

Android as shown in section 5.1.2 will be used in set top box or TV to open up the environment

to the end users. This will allows the end user, on top of existing functionalities, to stream data,

download apps, play games, use IP telephony etc. In this context, vIrtical project will explore

during the second year of the project how to improve android performances by offloading code

to the GPPA component or by using some compression techniques

2.2. Applications for telephony, data clustering and cryptography
Thales Communications & Security has provided 3 applications from 3 different domains:

1. Asterisk: PBX used in telephony.

2. KCluster: data clustering used in speech recognition.

3. OpenSSL: cryptography used in secure communications.

2.2.1. Asterisk
Asterisk is historically the first open source private branch exchange (PBX) for IP (Internet

Protocol), digital and analogue interfaces. Asterisk was created in 1999, first version was

released in 2004. The latest version is 10.0 released on 15 December 2011.

Asterisk offers a large set of PBX features like call forwarding, callee identification, conferences

and voicemail as well as a variety of call center and operator grade services such as interactive

voice response, text-to-speech and external call management via integrated APIs (Application

Programming Interface). Many VoIP (Voice over IP), analogue and ISDN protocols are

supported together with most of standard codecs. Asterisk is available under dual license: a

GPL (General Public License) and a proprietary software license allowing personalized closed

source distributions. It runs on Linux on x86 and PPC (Power PC) architectures. It supports

many telephony interface cards allowing its use as a gateway and media compression cards

allowing video and voice codec real-time conversion. It is maintained by Digium Incorporation

based in Alabama, USA.

Asterisk is widely used by Thales Communications & Security, mainly for test purposes, but also

as a gateway.

 7

Asterisk based call generators are used during the validation of Thales telecommunication

products. Automated test framework executes configured scenario and reports number of

dropped or failed calls, average call establishment time, voice quality etc. Thanks to numerous

Asterisk’s interfaces, this test tool can be used on VoIP as well as analogue interfaces.

Asterisk is also used in several Thales gateways. Asterisk’s features allow its use in two types

of gateway: VoIP/analogue and VoIP/ISDN gateways. An example of a VoIP/analogue gateway

is an integration of radio equipment in a VoIP network, where it’s necessary to convert an

analogue radio interface to an IP based one. Thales’s VoIP/ISDN gateways integrate client

specific value added services like QoS management.

Efficiency and scalability of Asterisk on multicore embedded platforms is of prime interest for

Thales, as well as the capability to handle power-efficient switches between a large number of

connections occurring in seldom cases and a small number of connections occurring at all

times.

2.2.2. KCluster
At the heart of the KCluster application there is the well-known K-Means core algorithm which is

done in one single stage. The variant here proposed does the split in two-stages in order to

allow for parallelization of multiple K-Means algorithms in the second stage. K-Means is an

algorithm designed to iteratively build a representative codebook from a training set of multi-

dimensional data. The resulting codebook consists of a set of centroids, optimized to minimize a

global distortion. The global distortion is computed as the cumulated distortion over all the

training vectors using a nearest-neighbor criterion to select the representative centroid for each

data vector.

K-Means principle

1. Initialization step: before entering the k-Means iterative optimization process, the

centroids should be initialized. Various methods can be used for initialization depending

on the available a priori information on the data. Here we only provide two types of

initialization: random selection of vectors in the training set, and selection of the vectors

which are the closest to the global mean of the training set.

2. Classification step: from an iteration to the other, once the centroids are updated (or

initialized), all the training vectors are classified according to a nearest-neighbor rule.

The training set is therefore partitioned in K classes associated to the corresponding K

centroids.

3. Update step: once all the training vectors have been classified, the centroids are

updated using the vectors in the corresponding class. The resulting codebook can then

be re-optimized by going back to step 2), or considered as the final codebook

depending on the termination step.

4. Termination step: the distortion is calculated as the cumulated distortion over all

classes. One typical termination criterion is to stop the iterative optimization, when the

relative distortion improvement is below a predefined threshold.

 8

2.2.3. OpenSSL
OpenSSL is a well-known suite of open-source library and tools implementing cryptographic

algorithms used for authentication and secure data transfers over networks. It is used by many

services such as https and ssh. As indicated by its documentation, it implements the following

cryptographic functions:

• Creation of RSA, DH and DSA key parameters,

• Creation of X.509 certificates, CSR and CRL,

• Calculation of message digests,

• Encryption and decryption with ciphers,

• SSL/TLS client and server tests,

Handling of S/MIME signed or encrypted mail.

2.3. Applications for Vision and Image Processing
Scientific and industrial communities are showing a growing interest in developing Computer

Vision (CV) algorithms on high-end embedded systems. However, CV algorithms are well

known for their high complexity and for being very resource-demanding. CV processing is

indeed a computation-intensive task, dealing with huge amounts of data (an image can count

several millions of pixels/bytes) and performing a large number of repetitive calculations over

the whole image data set or part of it. Low-level data processing, like pixel-based operations,

requires a large number of memory transactions and can quickly become a bottleneck if the

system architecture is not tailored to such a kind of processing. Furthermore, higher-level

algorithmic tasks (e.g., segmentation or recognition) can require complex iterative or recursive

mathematical kernels that are quite demanding in terms of computational power. This is

especially true in the embedded domain, where the complexity of processing nodes is limited by

several constraints like power consumption, size and cost.

Accelerating those key computational kernel is thus paramount to speeding-up the execution

time of more complex applications such as object motion tracking, object recognition and

similar. We have identified three core kernels that are used by several vision applications to

extract significant features from images:

1. SIFT (Scale-Invariant Feature Transform)

2. SURF (Speeded-Up Robust Features)

3. FAST + BRIEF (corner detection).

These kernels are used as a basic step in many applications in the field of computer vision: they

work on raw images, and managing large amounts of raw data they basically turn out to be

computation bottlenecks.

 9

2.3.1. SIFT
SIFT [Bay08] is an algorithm that detects and describes image features. The computed

features are mainly invariant to image scaling and rotation, and partially to change in

illumination and camera viewpoint. SIFT uses a cascade filtering approach: it looks for some

distinctive points (keypoints) in the image, then most of the candidate points are discarded at an

early computation stage, in order to skip computationally intensive operations. The first stage of

the algorithm creates a Gaussian pyramid that is a set of images which are derived from the

original one applying a sequence of downsampling, upsampling and blurring filters. The

algorithm provides three main configuration values to define this gaussian space, which are the

number of octaves, the scale of first octave and the number of layers. Each octave is

characterized by a different image scale, and default parameters imply a variation from twice

the original size (octave scale 1) to one fourth of the original size (octave scale 2). The layers

are the images actually contained in each octave: each layer, from 0 to 2 in the default

implementation, corresponds to a increasing sigma value for gaussian blurring filter. The

second stage computes the Difference of Gaussians (DoG) between adjacent layers in the

same octave, and also the gradient of images, which is computed for each octave and layer.

The third stage is the keypoint localization: local estrema in the DoG images are selected as

candidate keypoints, considering neighboring pixels in both the selected image and the adjacent

ones (which have been computed by the same layer image). Keypoints are filtered to remove

edges, as they are redundant, and finally a non-maxima suppression is performed. The fourth

stage assigns an orientation to each keypoint (sometimes more than one), using the local

values of the gradient in the point area. The last stage is the creation of keypoint descriptors.

The 16x16 region around each keypoint is described using a statistical analysis of local gradient

orientations: orientation histograms are computed considering 4x4 subregions and 8 bins, then

they are packed into 128-entries descriptors. The descriptors are finally normalized with the aim

to minimize the effects of change in illumination. SIFT is one the most accurate algorithms for

feature detection, but at the same time it is quite slow, so it is currently considered to be

unsuitable for real-time applications, unless we consider small images or need a greater

accuracy.

2.3.2. SURF
SURF [Cal10] is a detector and descriptor algorithm. Its approach is similar to SIFT but SURF

uses faster techniques, and in some cases it is also more robust than SIFT. The detector stage

is based on the determinant of a Hessian matrix, and considers both position and scale.

Hessian matrices are computed by means of discrete box filters, that approximate second order

Gaussian derivatives and can be computed using integral images. SURF uses 9x9 box filters at

the lowest scale, referred as scale 1.2 (1.2 is the sigma parameter of the Gaussian filter). The

scale space is analyzed by upscaling the filter size using bigger masks: this operation has a

constant cost when using integral images, which in general enable fast computation of box type

 10

convolution filters for big kernel sizes. The scale space is divided into octaves, which are

subdivided into a constant number of levels. The default parameters of the algorithm provide 4

octaves, and 4 levels per octave.

The minimum increase of the mask size for two adjacent levels corresponds to 6 pixels, in order

to guarantee a good Gaussian approximation. At the first octave, filters with sizes 15x15, 21x21

and 27x27 are applied. For each new octave, the filter size is doubled: the filter sizes for the

second octave are 15x15, 27x27, 39x39, and 51x51. The last octave uses 51x51, 99x99,

147x147 and 195x195 kernels. To reduce the sampling intervals for the extraction of the interest

points, the sampling step is doubled at each new octave, with minimum loss of accuracy.

In order to localize interest points, the maxima of calculated determinants are interpolated in

scale space, and then a non-maximum suppression in a 3x3x3 neighborhood is applied.

The descriptor phase of SURF is similar to SIFT: a main orientation is first computed for the

keypoint, and then orientation statistics are extracted for a region centered on the point itself.

The size of this window is 20 times the image scale value, and it is divided in 4x4 subregions,

each one internally divided in 4x4 areas. SURF computes orientations using Haar wavelet

responses, which are invariant to changes in illumination and contrast. The final keypoint

descriptor vector contains 64 elements.

2.3.3. FAST + BRIEF
FAST [Ros10] is a corner detection algorithm. It analyzes all points in the image, and compares

the intensity value of each point p with all the sixteen points on the circle of radius 3 and center

p; p is classified as a corner if there exists a set of contiguous pixels within the circle that are all

brighter (minimum) or darker (maximum) of p (with a tolerance threshold). The number of

contiguous pixels and the threshold value are both algorithm parameters; typical values are

respectively 9 and 20.

All the versions of FAST assign a score to each detected corner, in order to enable a

subsequent non-maximal suppression stage, with the aim to filter the corners which have an

adjacent corner with higher score. Even if it can be used as a feature detector, FAST does not

provide a step to generate keypoint descriptors. Nonetheless, extracted features can be

described using a companion algorithm: a typical example is BRIEF, which produces compact

binary descriptors.

BRIEF [DBwᶟ] is an algorithm that computes keypoint descriptors using a method that produces

efficient bit strings. The algorithm computes a small number of pairwise comparisons on a

image patch centered on the keypoint, and then creates a bit vector as the final result of all the

comparisons related to the same keypoint. This vector is finally packed in a bit string. At each

step, BRIEF smooths the current image patch with a Gaussian filter, in order to reduce noise

sensitivity and increase the stability and repeatability of the descriptors. The numbers of

 11

pairwise comparisons considered by the authors (corresponding to a binary string of 16, 32 or

64 bytes) yield a good trade-off among speed, storage efficiency and recognition rate.

3. Acceleration opportunities
In this section we analyze the acceleration opportunities of the target applications described in

the previous one.

 The target platform template considered in the vIrtical project consists of an ARM-based host

subsystem, plus accelerators of different nature (i.e., a programmable manycore, the GPPA,

plus HW functional units, HWPUs), which can deliver tremendous peak performance, given that

the target application can exploit it. In this section of the document we investigate the potential

for different approaches to accelerating the target applications. We consider three different

approaches, which are currently being adopted by vendors and/or research institutes

1. Architecture Specific Optimizations: this methodology consists of assessing the

acceleration opportunities for an implementation of the target algorithm that is optimized

to run on the ARM host processor only, taking advantage of specific architectural

features (e.g., SIMD engine).

2. Coarse-Grained Thread-Level Parallelization: this approach aims at assessing the

acceleration opportunities for an implementation of the target algorithm that parallelizes

the workload among the small number of available cores in a typical ARM multi-core

host subsystem. Coarse-grained threads are identified as a parallel unit of work from

the application.

3. Fine-Grained Data-Level Parallelization: this methodology explores the potential for

accelerating the target application on a large number of threads, by offloading it onto

the GPPA. Thus we consider a different parallelization scheme which is fine-grained

enough to keep busy a very large number of cores. We leverage loop-level parallelism

to generate several fine-grained threads.

In particular, approaches 1 and 2 are suitable for the industrial applications described in Section

2.1, as explained in the following sections. Computer vision algorithms, on the other hand, are

characterized by a remarkable workload, in particular when high definition images are

considered. The traditional target of CV libraries is the desktop computing environment. Since

embedded devices have not the same computing capabilities of desktop mainstream

processors, the execution of such algorithms on mobile platforms often presents unsatisfying

performance. However, CV workloads often exhibit fine-grained (i.e., pixel-level) parallelism,

which makes them a suitable candidate for acceleration on the GPPA (approach 3).

We will thus describe the acceleration approaches for the two categories of applications in the

two following sections.

 12

3.1. Acceleration opportunities for telephony, data clustering and
cryptography applications

3.1.1. Asterisk
As introduced in Section 2.1.1, Asterisk offers several PBX features for telephony services. New

voice calls are handled by creating additional threads, thus it becomes straightforward to

manage execution of multiple threads in parallel. Clearly, the degree of parallelism is directly

dependent on the number of simultaneous calls occurring at the Asterisk host, thus we can only

consider exploiting coarse-grained task-level parallelism for this application. This type of

parallelism is well suited to run entirely on the host ARM system. A tasking programming model

(e.g., OpenMP task directives) can be used to specify dynamically the creation of additional

parallelism from the application.

3.1.2. KCluster
The KCluster application heavily relies on KMeans-based data clusterization. There are many

approaches in literature discussing parallelization of KMeans for different systems (for a good

survey see [Zha06]). The algorithms lend itself to different partitioning granularities: task

parallel, data parallel and a mix of the two. In order to allow for parallelization of the KCluster

application, we provide the following modified version of KMeans.

Modified K-Means

In the provided implementation, we consider a clustering algorithm combined several K-Means

processes. A primary codebook (size L0) is first optimized on the whole training set. Then for

each resulting centroid, we consider the set of vectors in the corresponding class as a new

training set for secondary codebook (size L1). The secondary codebooks are iteratively

optimized, and training data are re-allocated at the end of each iteration.

Parallelization

The optimization of the L0 secondary codebooks (of size L1) can be parallelized using a

multicore processing platform. Generally the number of core processing units will be less than

the number of L0 of codebooks, and the allocation of each optimization process should be done

dynamically, since the duration of each optimization process can be different. It is approximated

in the example code by the required number of iterations, in order to provide an example of

dynamic allocation to the different cores.

This partitioning scheme, mostly task-based, is convenient for execution on the ARM

subsystem. The load imbalance issue can be easily addressed by dynamically allocating

parallel tasks to available processor, rather than statically determining a workload partitioning

scheme.

 13

3.1.3. OpenSSL
Cryptographic algorithms can be accelerated by using co-processing resources such as SIMD

engines or specific cryptographic devices such as those present in PowerQUICC processors.

Within the vIrtical project the first approach can be implemented by leveraging ARM NEON

extensions. Dedicated HW blocks like those from the second approach could also be

considered by implementing a specific HWPU (HW Processing Unit, see D1.2).

Also, a few approaches to parallelization of a class of encryption algorithms (AES, Rijndael) on

many-core devices (i.e., GPUs) are available in literature [Le10], which promise speedups of up

to 7x, and which could be considered as a guideline to accelerating such algorithms on the

GPPA in the vIrtical project.

More information on OpenSSL is available at www.openssl.org

3.2. Acceleration opportunities for Vision applications
While in literature there are several approaches to parallelizing applications for data clustering

or cryptography, discussed in the previous section, for computer vision kernels there is less

previous work available, which calls for a more detailed analysis. The source code for the

computational kernels described in Section 1.2 is available from the open-source OpenCV

(Open Source Computer Vision) library [Stu11]. OpenCV is a CV-oriented, cross-platform

programming library, widely used by both academic and industrial partners. A pre-parallelized

version of these kernels, which we use for approach 2 from the list above, comes from the

MEVBench suite from University of Michigan [Cle11].

The presentation of our study is divided into three independent sections, each one related to a

different approach. To conduct our preliminary studies and to validate the above-mentioned

methodologies prior to the definition and the availability of the vIrtical platform, we use the

following approaches:

A. To estimate the behavior of code optimization strategies meant for the host system we

use a Qualcomm DragonBoard [OCVwᶟ] as a hardware platform. The DragonBoard is

an advanced developer board, featuring a Snapdragon S3 APQ8060 SoC, which

shares the following key architectural characteristics with the host system of the vIrtical

platform:

• An ARM-based dual-core host system, based on the same ARMv7 ISA of the

Cortex A15

• Support for the signal processing-oriented NEON instruction set extensions and

floating-point VFPv3 extensions (the VeNum media processing engine)1

• An Android-ready SDK, which allows us to readily execute OpenCV codes

.

1 Qualcomm's NEON data paths are 128-bits wide. Since the ARM NEON is 64-bits wide, the Snapdragon

S3 VeNum can issue the equivalent of two NEON instructions in parallel.

http://www.openssl.org/�

 14

Table 1 summarizes the main architectural parameters for the Snapdragon S3 SoC.

B. To estimate acceleration opportunities for parallelization approaches leveraging

programmable manycores (i.e., the GPPA – approach 3 from the list above) we either

use a in-house, SystemC simulator of a cluster of the GPPA (see D1.2) or commodity

GPU card. Specifically, we use a NVIDIA GeForce GTX 480 on a desktop machine

equipped with a Intel Core i7920 CPU @ 2.67 GHz and 6GB DDR3.

Table 1: Snapdragon S3 SoC hardware parameters.

3.2.1. Architecture Specific Optimizations
The first set of experiments is aimed at assessing the acceleration opportunities for

architecture-specific optimizations on the host processor. We consider three different

implementations of the FAST benchmark (see FAST + BRIEF):

• OpenCV: the original algorithm, contributed to OpenCV by the author, Edward Rosten.

The algorithm has been substituted in OpenCV 2.3.1 with the optimized version (see

below).

• Rosten: Machine-generated code, optimized for speed [Ros10]. It consists of an

heuristic procedure derived from a machine learning tree.

• FastCV: the FAST algorithm from the FastCV library. FastCV [QDNwᶟ] is a proprietary

vision library distributed by Qualcomm providing a mobile-optimized computer vision

library which includes the most frequently used vision processing functions for use

across a wide array of ARM-based mobile devices. FastCV is designed for efficiency on

all ARM-based processors, but is tuned to take advantage of Qualcomm's Snapdragon

processor (S2 and above). In particular it uses vectorial instructions to perform multiple

comparisons per cycle.

OpenCV and Rosten algorithms are compiled with the g++ compiler included in the standard

NDK toolchain, with instruction set ARMv7, NEON support disabled and optimization level -O2.

The FastCV library is distributed in binary form and can execute in two distinct operative modes:

Performance mode (1), which enables the SIMD unit, and Low Power mode (2), which only runs

on the processor.

 15

Fig. 1: Comparison of FAST implementations.

Fig. 1 depicts the execution times (in milliseconds) of each FAST implementation. On the bottom

part of the figure we report execution times in a table.

The results show that exploiting processor architecture-specific optimizations, notably the SIMD

engine, the algorithm execution time can be sped-up up to 2.34 w.r.t. the standard version.

3.2.2. Coarse-Grained Thread-Level Parallelization
Besides using SIMD acceleration, another opportunity for improving the performance of the

target applications on the host subsystem is parallelization. The small number of processors

available on the multi-core processor clearly limits the number of threads that it is possible to

exploit in the parallelization strategy. A parallel implementation of the target algorithms for

general-purpose processors is provided in the freely-available, open-source MEVBench suite
[Cle11]. We tuned the implementation of SIFT, SURF and FAST to run on Android systems. We

consider a test image scaled in three different sizes:

• Small (352x288 pixels): 101376 pixels that require 2376 KB in RGB format and 792 KB

in greyscale. 169 KB in PNG format. It is a standard size for mobile phone videos and

images produced by very low-resolution digital cameras.

• Medium (640x480 pixels): 307200 pixels that require 7200 KB in RGB format and 2400

KB in greyscale. 465 KB in PNG format. It is a standard VGA format.

• HD (1920x1080 pixels): 2073600 pixels that require 48600 KB in RGB format and

16200 KB in greyscale. 1915 KB in PNG format. It is a standard full high definition

format for video streams.

 16

Note that the last configuration could only be tested with the FAST + BRIEF algorithm, since

both SIFT and SURF run out of memory during the experiments.

Fig. 2 shows the execution cycle scaling when parallelizing the various applications among an

increasing number of threads (on the x-axis). Cycle count (on the y-axis) for the various

configurations is normalized to the value for single thread, small image.

Fig. 2: Execution time (normalized) scaling for coarse-grained parallelization.

Regarding the FAST + BRIEF application, it is possible to see that there is basically no speed-

up when increasing the number of threads. This is due to i) the coordination phase which is

extremely time consuming and not parallelizable thus dominating the Amdahl law sequential

part and ii) the parallel part which adds coordination overhead (barrier) which increases with the

number of threads.

Things change a little for the remaining two applications, where coarse-grained parallelization

can achieve some speed-ups. For SIFT, the maximum speed-up is obtained with two threads

(i.e., as many threads as cores). With this configuration the workload is balanced, and the

coordination phase has a negligible impact. When more threads are considered the total

overhead increases with no additional benefits derived by hiding memory latency by means of

thread switching.

The last application, SURF, lacks a final complete coordination phase. In more detail, each

thread performs feature extraction on a partially overlapping part of the image, and the same

feature can be extracted multiple times: a final matching step is omitted, and the coordination

phase reports the sum of the feature extracted. This is not a real issue, as a subsequent step

may discard the repeated values if needed. SURF benefits from the overlapping between

computation and memory transfers, due to a different algorithmic approach and a lighter

coordination phase. Thread switching partially hides the effects of memory latency when we

consider the medium-sized image, and consequently the speed-up increases when using more

than two threads (more threads than cores).

Overall, the results for these preliminary experiments show that i) coarse-grained parallelization

schemes intended for general-purpose processors may perform poorly on embedded devices,

 17

due to different hardware (memory, synchronization) and ii) overall, increasing the number of

software threads beyond the core count does not bring additional benefits, on the contrary it

may slow down.

3.2.3. Fine-Grained Data-Level Parallelization
The experiments presented in the previous sections demonstrate that the speedup that can be

achieved on the host subsystem by means of parallelization and exploitation of SIMD engines is

limited. The platform template that we target in the vIrtical project can be equipped with a many-

core programmable accelerator, the GPPA (General Purpose Programmable Accelerator).

Clearly, the parallelization scheme that needs to be adopted to take advantage of the GPPA is

very different from the one used in the MEVBenchs. Indeed, if the number of processing cores

is small, parallelization can generally be coarse-grained, where the amount of work is high

enough to keep the cores busy and can tolerate synchronization overheads among a small

number of workers. However, the same parallelization approach is bound to provide poor

results for higher processor counts. It is therefore important to evaluate the benefits of a parallel

implementation that is designed with scalability in mind in this scenario. We present in the

following the parallelization strategy for each of the benchmarks.

3.2.3.1. SIFT
The SIFT algorithm consists of two main phases: features detection and feature description. We

focus here on the most computation-intensive part, feature detection. A candidate feature

(keypoint) is a pixel located at a specific image frequency scale that has either the minimum or

the maximum value in relation to its neighborhood, defined by a 3x3 window located at the

same scale space and at the upper and lower adjacent scales. The frequency band for each

scale is obtained by using the difference of Gaussian (DoG) operation, which is computed by

subtracting two identical images convolved by two different Gaussian kernels. Equation (1)

defines the convolution operation for the first and the other subsequent scales, where I is the

input image, K the Gaussian kernel and G the smoothed image.

() () ()
() () ()yxGyxKyxG

yxIyxKyxG

sss ,*,,
,*,,

111

00

+++ =
=

 (1)

Equation (2) defines the difference operation (DoG), where D is the resulting image at a specific

frequency scale defined by the kernel values (s).

() () ()yxGyxGyxD ssi ,,, 1 −= + (2)

Accepting a keypoint as a feature is evaluated through three functions: location refinement,

contrast check and edge responses. The location refinement is performed as shown in Equation

(3), where l is the pixel location vector (x; y; s) (coordinates <x;y> and scale s). This equation

performs an interpolation operation with the pixels found inside of the keypoint’s neighborhood

 18

(26 pixels), with ω added to the current keypoint position in order to produce its new location.

The ω offset is also used to compute the keypoint contrast. If the result is smaller than a user-

defined threshold then the keypoint is rejected.

l
D

l
D

∂
∂

∂
∂

−=
−1

2

2

ω (3)

Finally, principal curvature analysis is evaluated to reject keypoints that are located at poorly

defined edges, which are consequently highly unstable to noise. This is particulary necessary

for the difference of Gaussian function because most of the detected keypoints are located at

edges. The bigger the principal curvature, the poorer is its edge. Equation (4) shows how the

principal curvature is computed (and rejected if it is above a pre-established threshold).

() Threshold
HDet
y
D

x
D

≤

∂
∂

+
∂
∂

2

22

 (4)

where

∂
∂

∂∂
∂

∂∂
∂

∂
∂

=

2

2

y
D

xy
D

yx
D

x
D

H (5)

Fig. 3 shows a block diagram representing the main operations of the SIFT algorithm.

Fig. 3: Block diagram representing the main operations of SIFT.

We consider the following parallelization strategy, divided in four stages:

 19

a) Image upsampling and downsampling

b) Image smoothing

c) Difference of Gaussians and gradient

d) Keypoint detection and orientation

The granularity of parallelization is in general decided based on hardware peculiarities, we

describe here parameters chosen for a GPU prototype implementation. In a) we create an

upscaled image (2:1) and two downscaled images (1:2), (1:4). The parallelization strategy

employs as many parallel work units as pixels in each of the output images. Note that multiple

work units can be in general grouped in a single parallel thread depending on the peculiarities of

the target hardware. For GPUs employing the smallest work unit and the highest number of

threads achieves the best results, so we create as many threads as pixels. Also note that

scaling independent images can also be done in parallel.

In b) we apply Gaussian filtering as described by equations 1). In c) we compute the DoG

(equation 2) and the gradient (), while in d) we accept/reject candidate features through the

checks described by equations 3) and 4). The parallelization scheme for all these kernels

follows the same pixel-level partitioning.

Fig. 4 shows the speedup results achieved on the target GPU for the SIFT-parallel algorithm, for

increasing input image sizes (on the x-axis). We show three different bars. The blue bars

represent the speedup obtained against the original OpenCV SIFT function running on the CPU

when the whole algorithm is running as we described it above. The green bars represent the

speedup obtained when we neglect the cost for moving data back and forth from the CPU

space to the GPU space (e.g., what we could achieve if we could iterate the procedure over

multiple input images and hide the transfer latency with double buffering techniques). Finally,

the red bars show the speedup that can be obtained when we do not run the last kernel

(keypoint detection).

Both green and red bars show improvements against the blue bars. In particular, the keypoint

detection kernel proves to be the bottleneck in the scalability of the SIFT-parallel algorithm. The

main performance blockers for this parallelization scheme are two:

i. the presence of conditional instructions, which are in particular used heavily in the

keypoint detection stage and which is well known to be detrimental to GPGPU

programs performance

ii. the very significant amount of data moved inside the kernels between global and local

GPU memories. Figure 5 reports the size of memory transfers issued in each of the

kernels in SIFT-parallel. It is possible to notice that overall there is a huge amount of

data being transferred from global to local memory in GPU clusters. A better grouping of

work units into parallel threads can help reducing the overall size of these transfers.

 20

Fig. 4: Speedup results for the SIFT-parallel algorithm.

Fig. 5: Memory traffic due to data movements inside kernels in SIFT-parallel.

3.2.3.2. SURF
To understand the acceleration opportunities for the SURF application we analyze the

implementation available in the OpenCV library running on top of Android 2.3.3 on the

DragonBoard. We execute a series of tests on the sequence “freiburg1_desk”, extracted from

the dataset described in [Low04]. From the original frame size (640x480) we obtained two

scaled frame sets (400x300 and 320x240), that we used to assess the algorithm behavior.

Figure 6 shows the flat profiles obtained through gprof and android-ndk-profiler. On the top part

of the figure (a) we show the profile for frames containing from few tens up to two hundred

features. On the bottom part of the figure (b) we show the profile for frames containing eight

hundred to one thousand features. The functions implementing the three main stages of the

SURF algorithm (see SURF) are:

• cv::SURFBuildInvoker::operator() where the pyramid of Gaussian-filtered images is

created (see Algorithm 1)

 21

• cv::SURFFindInvoker::operator() where maxima of the determinant of the Hessian

matrix are computed

• cv::SURFInvoker::operator() where the descriptor of the extracted keypoints is

computed.

It is possible to see that most of the time is spent in smoothing images through Gaussian

filtering, as we already observed with SIFT. The second most important contribution to overall

execution time is descriptor creation, which clearly has a linear dependence with the number of

features found in the target image.

Fig. 6: Execution time profile for SURF. a) profile from frames with up to 200 features. b) profile from
frames with 800 to 1000 features.

From these observations the parallelization strategy can be designed as follows:

 22

• Keypoint detection: octaves are traversed sequentially in the original application, but for

each of them the computation of the trace and determinant of the Hessian matrix can be

executed in parallel for every point in that level, as well as the search for maxima and

space-scale interpolation;

• Orientation: the dominant direction can be computed in parallel for every keypoint.

Moreover, for each keypoint it is possible to parallelize wavelet filtering and response

accumulation in the point of interest neighborhood;

• Descriptor computation: every sub-region of every descriptor can be independently

extracted in parallel over multiple threads (synchronization is needed), to determine the

values of the derivative in every key point of the sub-region. The following normalization

stage can also be executed in parallel over multiple features.

3.2.3.3. FAST
FAST [Ros10] is a corner detection algorithm that first analyzes all points in the image, and

compares the intensity value of each point p with all the sixteen points on the circle of radius 3

and center p (see Fig. 7). p is classified as a corner if there exists a set of contiguous pixels

within the circle that are all brighter (minimum) or darker (maximum) of p (with a tolerance

threshold). The number of contiguous pixels and the threshold value are both algorithm

parameters; typical values are respectively 9 and 20.

Fig. 7: FAST access pattern.

Given an N*M input image, the algorithm generates an output vector whose size is N*M*3,

containing the coordinates of the corner points and a score. The latter is used in a subsequent

non-maxima suppression stage, which merges multiple pixels belonging to the same corner.

Finally, a keypoint detection pass detects relevant features. The core kernel performs most of

the computation and it exhibits data-parallelism at the pixel level.

 23

To estimate the acceleration opportunities for our parallel FAST algorithm we design a

prototype implementation for a cluster of the GPPA, for which we developed a SystemC virtual

platform. The block diagram for a cluster of the GPPA is shown in Fig. 8.

Fig. 8: Block diagram of the single-cluster GPPA used for the experiments.

A cluster consists of a configurable number (up to 16) of RISC32 processors with private

instruction caches. Processors are interconnected through a low-latency, high-bandwidth

logarithmic interconnect, and communicate through a fast multi-banked, multi-ported L1

scratchpad memory (Tightly-Coupled Data Memory – TCDM). The number of memory ports in

the TCDM is equal to (a multiple of) the number of banks to allow concurrent accesses to

different banks. Conflict-free TCDM accesses have two-cycles latency.

Scaling to larger core counts in this architectural template is achieved by interconnecting

several clusters through a NoC, to which we also connect a memory controller to the main

memory, where program code and data are originally stored. The table below summarizes the

main architectural parameters for our virtual platform.

ARM v6 Cores (up to) 16 TCDM banks 32
I$i 1 KB size TCDM size 256 KB
I$i 4 words line MAIN mem latency 50 cycles

t 1 cycle hit MAIN mem size 256 MB

To match these parameters, parallel units of work in FAST are designed to process an entire

image row. We consider different sizes for the input images: 64x64, 128x128, 256x256 and

512x512 pixels. As such, the granularity of parallel work units doubles with the input size.

However, due to the limited size of the L1 memory (TCDM) it is not possible to store the whole

dataset therein. We thus split the image into stripes, and process them one after the other. We

adopt a double buffering technique to overlap computation and DMA transfers from the global

memory.

 24

Fig. 9: Fast-parallel implementation.

The parallelization scheme is schematically represented in Fig. 9. Fig. 10 shows the speedup of

the parallelized algorithm compared to the sequential version for different image sizes. A

considerable speedup is achieved even for small images (11× for a 64x64 image, with each

thread only processing 64 pixels) and we reach almost ideal speedup for bigger input sets

(256x256 and 512x512), thus confirming the scalability of our parallelization scheme.

Fig. 10: Speedup of the FAST-parallel benchmark for different image sizes.

4. Memory system opportunities
Concerning the memory system opportunities, we have identified two different design issues in

multicore systems that can help on obtaining the aforementioned target objectives described in

 25

the introduction: cache coherence protocols, (that manage shared objects between cores of the

CMP), and compression (for a power consumption and execution time efficient system).

The cache coherence problem arises when copies of the data are found at several private

caches associated to the cores, being reachable at the same time by two or more cores, are

modifiable by some of them. The cache coherence protocol must guarantee coherence of the

data through the entire system which means deciding how and when a single core is granted

permission to modify data and ensuring that subsequent readings of the written data by other

cores will attain updated copies of the modified data (multiple readers). To do so, different

cache coherence mechanisms can be applied. Commonly, these mechanisms introduce certain

overhead in terms of either coherence traffic issued or storage resources required, which can

significantly penalize performance, increasing the execution time of the running applications as

well as power consumption. The current trend to increase the number of cores into CMP and

MPSoC systems further aggravates this problem, jeopardizing the scalability of the coherence

mechanisms. In brief, the cache coherence protocol does not scale, due to its resource

overheads and its indirection when accessing data (access latency is increased).

On the other hand, a different approach to tackle the coherence problem has recently been

proposed ([Cues11], [Har09] and [Kim10]), consisting on removing coherence maintenance for

those data objects (memory blocks) that do not need it, either because they are not shared

(private to one core) or because they are shared but never written by any core. This approach

requires the use of effective mechanisms to identify data blocks that do not need coherence

maintenance, which in turn may introduce certain overhead. Anyway, the success and suitability

of the selected coherence mechanism will strongly depend on both the architectural context of

the system it is being applied to and the sharing patterns of the applications running on the

system.

Therefore, as a first step in the exploration of cache coherence protocols in the vIrtical project, a

detailed analysis of the sharing patterns of the applications to be supported is needed, in order

to identify opportunities of applying one or another cache coherence mechanism together with

different coherence optimization techniques.

At the same time, in the vIrtical project, reducing power consumption is of high relevance. In the

final system a NoC will be developed connecting all the key components. When running the

coherence protocol, the NoC will be in charge of transmitting large amounts of data, mainly

memory blocks between memory resources (L1s, L2s, directory structures, memory controllers).

Data transferred in the NoC can consume a significant percentage of the power of the system,

more significant as the system will increase in size.

In several previous works, different data compression mechanisms are proposed and analyzed.

In those works, the impact of NoC traffic in system power and execution overhead can be

significantly reduced. In this deliverable we present a detailed analysis of the traffic generated

by the analyzed applications over the NoC, in the context of the vIrtical project. The main aim is

to identify compression opportunities so to select the best mechanisms that will optimize power

reduction when focusing on the data traffic over the NoC. It is important to note that we focus on

 26

NoC-data compression opportunities and not on storage compression opportunities. Thus, data

is expected to be compressed and uncompressed when entering and leaving the NoC

transmission respectively.

The remainder of this section is organized as follows: first we will give an overview of the

capturing methodology used to obtain the data analyzed; secondly we will focus first on sharing

patterns and later on, on compression opportunities detailing specific methodology

particularities and showing our analysis results; finally some conclusions will be derived of the

previous analysis and directions for next year research within the project for compression and

coherence protocols will be given.

4.1. Analysis Methodology
Both sharing patterns and NoC-data compression opportunities must be analyzed under the

same premises and thus they must share the applied methodology and tools. However, they

also differ in several aspects. An analysis framework has been built in any case to make these

analyses possible. In this section we show the main characteristics of such framework.

The steps followed to analyze both issues are similar as can be seen in Fig. 11. First of all, in

both cases, we trace memory accesses requested by the cores when running real applications.

For the NoC-data compression analysis we perform a second step aimed at simulating the

transfer over the NoC of data blocks included in the previously traced memory accesses over

the NoC. Finally in both cases, we obtain statistics for the previously obtained traces.

Fig. 11: Analysis Methodology Scheme.

4.1.1. Target System
The target system considered in the project is a heterogeneous multiprocessing system with a

NoC connecting the main processing units, a GPPA to enhance performance and the main

memory. The ARM architecture is defined as the target processing host, more precisely ARM's

big.LITTLE architecture. It consists of one dual-core Cortex-A15 MPCore and one dual-core

Cortex-A7 MPCore connected using the ARM CoreLink CCI-400 as described in Deliverable

1.2.

We use a simplified version made of a quad-core Cortex-A15 MPCore. The trade-off between

complexity and accuracy makes this option more suitable. Conclusions obtained with the quad-

core Cortex-A15 MPCore can be extrapolated to its big.LITTLE counterpart with acceptable

precision. Furthermore, big.LITTLE has two different working modes, either only Cortex-A15 or

 27

Cortex-A7 processors are awake or they are both working at the same time. When all

processors are working at the same time they will not run a parallel application in both of them

because they work at different frequencies. Since we are mainly concerned on parallel

applications, the use of big.LITTLE is not mandatory.

Other characteristics of the simulated system for compression opportunities are:

• NoC with a 4x4 2D mesh where each core has been simulated as an individual node. In

the target system the whole quad Cortex-A15 will be only one node, but in order to

model the behavior of caches separating cores was a more suitable option.

• 4 L1 caches (one per core) each with 128 sets, 4 ways and a line size of 64 bytes.

• 1 L2 cache (shared by all the cores) with 512 sets, 16 ways and a line size of 64 bytes.

Caches are inclusive (L1 caches’ content is included in L2).

• 4 memory controllers located at the corners of the NoC.

• As for messages we have: control messages are 8 bytes long and data message are 72

bytes long; flit size is 4 bytes.

• The switching mechanism is virtual cut-through and the flow control is Stop&Go. The

crossbar is allocated at packet level and supports collective communication (although at

the moment no broadcast or multicast is being applied).

In Fig. 12 we can see the simulation target system, with the ARM Cortex-A15, the GPPA and

other potential components connected by the NoC. (The figure does not show the 4x4 mesh,

instead it shows an irregular topology).

Fig. 12: Simulation target system

4.1.2. Simulation Tools
We use ARM FastModels together with our gMemNoCsim tool. Next we describe how these

tools are used to model the target system.

ARM FastModels simulator provides out of the box programmer’s view models of the ARM

processors. It is thus both functionally accurate and easy to use since ARM processors models

are already implemented as an Instruction Set Simulator. We use this simulator to model the

quad-core Cortex-A15 MPCore part of the target system and to run on top of this the targeted

applications.

 28

The model of Cortex-A15 provided with FastModels is capable of running basic applications, but

it does not cover all the requirements of an operating system, which is needed to evaluate and

benchmark parallel applications. We thus use a more complex model also provided with

FastModels (namely RTSM-VE Cortex-A15) that allows the simulation of both operating

systems and applications. In this RTSM-VE model, as seen on Fig. 13, the cores are connected

directly to a Versatile Express platform through a 64-bits AXI bus. This platform includes the

Motherboard Express uATX, which has been especially designed to support future generations

of ARM processors, and the CoreTile Express daughterboard with the on-board DDR2 SDRAM.

The motherboard provides the following features:

• Peripherals for multimedia or networking environments.

• All motherboard peripherals and functions are accessed through a static memory bus to

simplify access from daughterboards.

• Consistent memory maps with different processor daughterboards simplify software

development and porting.

• Supports FPGA and processor daughterboards to provide custom peripherals, or early

access to processor designs, or production test chips.

The daughterboard contains the Cortex-A15 ARM processor model.

Fig. 13: ARM FastModels RTSM-VE model.

On the other hand, gMemNoCsim is a cycle accurate event-driven NoC simulator developed at

UPV by the parallel architectures group (GAP), which allows high precision in modeling the key

elements of NoCs, including all the key design aspects: as topologies, router, routing

algorithms, schedulers and flow control mechanisms. In its current version, gMemNoCsim also

models cache coherence protocols on top of the NoC.

 29

gMemNoCsim has the capability of working with synthetic traffic, with real traces or it can be fed

on-line with the output of a different simulator. In our case we feed gMemNoCsim with the

memory access traces obtained by running the applications on Fast Models. Thus,

gMemNoCsim simulates the memory hierarchy (converting memory accesses in memory block

accesses flying between L2 cache and main memory over the NoC). This will provide the data

needed to analyze compression opportunities.

gMemNoCsim has been enhanced, within the project, to add support for actual data exchange

between all levels of the memory hierarchy. Also, tracing capability of gMemNoCsim has been

provided to cope with the needs of compression analysis.

4.1.3. Trace Acquisition Methodology
The information that we expect to find on the trace files differs, depending on the focus of the

analysis, whether the analysis is made in search of compression opportunities or for sharing

pattern analysis. For sharing pattern analysis we need to capture all memory accesses from the

cores. In turn, for memory compression opportunities, as communication between L1 and L2 is

managed internally by ARM processors, we need to capture all communication between L2 and

main memory. In the later we also need to know the memory contents in order to analyze the

data transferred.

For sharing pattern analysis our point of interest is the parallel section of the applications,

namely the section executed by several cores at the same time. To identify this section we

explored the application code looking for the starting point and end point of threads. This was

identified with THALES support. To delimit this section and make it recognizable by FastModels

we introduce a special nop instruction on the application, which is available on the ARM

Instruction Set. Therefore, tracing is started when the reserved instruction is fetched and a

subsequent appearance of such an instruction determines that the tracing must finish.

On the other hand, compression involves not only shared data but also private data, so limiting

the trace acquisition to the parallel section of the applications is no longer mandatory.

Nevertheless, beyond that consideration, the traces obtained for sharing pattern analysis are

suitable for compression analysis as well, so no different set of traces has been obtained.

FastModels supports the use of a Model Trace Interface (MTI) plug-in that permits us to

consistently track the execution of the model. Through implementing an MTI plug-in for tracing

memory accesses produced by the cores and adding it to the simulation we are able to trace

exactly what we needed in the form that we required. The ARM simulator offers other alternative

tracing methods but they would either modify the system behavior when using RTSM-VE model

or be prohibitively time consuming.

MTI plug-in provides many different sources to trace, but the more verbose the trace obtained is

and the more sources are involved, the more it slows down the simulation. Since it takes billions

of instructions to boot a Linux system on FastModels, we need to deactivate the output and

minimize the number of sources of the tracing until the starting point of the segment of interest

 30

is detected. We have achieved an acceptable compromise solution by capturing only the

instructions fetched by the cores until we reach the aforementioned special nop, and

subsequently tracing loads, stores, and fetches until we get to the ending special nop.

The ARM Simulator provides programmer’s view models with some limitations. On system

simulators there is a trade-off between speed and accuracy: very accurate simulators lack in

speed whilst fast simulators cannot be totally accurate. FastModels in particular opts for the

execution speed thus lacking some features needed for our analysis, such as:

• Instruction timing: A processor issues a set of instructions (a.k.a a quantum) at the

same point on the simulation time, and then waits some amount of time before

executing the next quantum, being impossible to determine the right time each

individual instruction is executed.

• Bus traffic: bus traffic has several optimizations that make it inaccurate. We were

able to deactivate some of those optimizations but not all of them, at the expense of

making the simulation far slower and still not accurate to the level required.

• It does not support out-of-order execution and write-buffers as architecturally

defined: execution on FastModels is only an approximation to execution of

architecture and it must be thus considered.

As mentioned above, traces must be obtained in the exchange of L2 and main memory to be

used for compression opportunities analysis, including memory contents. Since we could not

find a proper MTI source to trace at this point, we used the traces obtained from FastModels

and feed them to gMemNoCsim. gMemNoCsim reproduces the communication between all

different levels of the memory hierarchy translating loads and stores into coherent requests to

main memory. In turn, main memory contents were obtained in FastModels through the use of

CADI debug interface when the starting trace point was detected.

Finally, we describe the trace and memory files format. In the case of FastModels, we need to

obtain traces with the information required for coherency modeling, including the core id (to

characterize the number of sharers of the block), the address (to identify the block being

accessed), the type of access (to classify the block as data or instructions and to discriminate

writes from reads) and the data (for compression analysis). Traces obtained using

gMemNoCsim must include address (to analyze whether or not address compression can be an

interesting technique), and data (the entire block contents to analyze compression

opportunities). Source and destination have been included for readability.

Traces obtained from ARM FastModels using the MTI plug-in is as follows:

core,address,type,data
0,001ea10c,l,b6f6713c
0,b6f6713c,f,e92d001f
0,bef1de68,s,0020787c
0,bef1de10,bs,bef1eef4,bef1ef10,bef1f984,001a0c9c,00000003
Where type refers to: l (load), s (store), f (fetch), and b applied to l or s (burst load-store). When

a burst is detected the data field is extended to the total amount of data exchanged. Both

addresses and data are coded in hexadecimal format.

 31

Traces obtained from gMemNoCsim traces are as follows:

Address origin destination data_block
0x00207840 Memory L2Cache[0][481][0] 2030,69,0,0,1,88,0,0,0,0,52,3,1,4,0
0xdf04a040 L2Cache[0][129][9] Memory 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Where origin and destination can be either Memory or L2, including as indexes the node (in

case several L2 are present), index and way. Addresses are coded in hexadecimal format and

data is coded in decimal format.

Memory content obtained from FastModels is as follows:

Data
00000000
00000000
03e03dbf
801000c0
00000000
Memory is organized as a vector of words, which can be scanned translating address to line

number. To keep a backup for subsequent executions, a copy of the memory file is made when

starting to simulate the model on gMemNoCsim and all memory exchanges are made on the

copy.

4.1.4. Applications
We have obtained traces with five of the many different algorithms in the OpenSSL suite, three

hash algorithms (SHA1, SHA256 and SHA512), and two encryption algorithms (AES-128-ECB

and AES-256-ECB). We chose these algorithms since they are the most relevant ones

according to THALES point of view.

4.2. Sharing patterns analysis
As commented above, there exists several recent proposes that take advantage of memory

block classification for different purposes, such as enhancing efficiency of directory caches,

reducing coherence overhead or better taking advantage of NUCA caches. All of them are

mainly based on the classification of blocks in private (P) and shared (S). Moreover, some

others extend this classification to read (R) only and written (W).

So in this deliverable we propose to analyze blocks classifying them according to:

• PR (Private Read-only): Only one processor accesses the block. All accesses are

loads. Thus, the block is private to the core and only that core reads the block but does

not write it.

• PW (Private read-Write): Only one processor accesses the block. At least one access is

a store. Thus, the block is private to the core and this core reads and writes that block.

• SR (Shared Read-only): At least two processors access the block. All accesses are

loads. Thus, the block is shared by several cores but no one writes on that block.

 32

• SW (Shared read-Write): At least two processors access the block. At least one access

is a store. This is the most interesting mode as it requires coherence protocol support.

In this mode the block is shared and is written by at least one core.

Considering this classification, the only blocks that actually need coherence maintenance are

the SW ones and therefore we can take advantage of the fact that the remaining blocks do not

need it, either because they are accessed by just one core or because they are only read by

any number of cores. So special attention will be paid to SW blocks.

The classification schemes proposed in the literature have used different granularities: blocks

([Hos11] and [Pug10]) and pages (OS-based schemes, as can be seen in [Cues11], [Har09]
and [Kim10]), looking for a trade-off between detection accuracy and the required overhead. So

our analysis is made with three different granularities based on blocks and pages as

architecturally defined on ARM documentation: 64 bytes block, 4 Kbytes pages, and 64 Kbytes

pages. This is interesting since coherency at such a level is easier to implement and manage.

Working at page level also allows us to rely on the operating system to detect whether

coherence needs to be applied or not, aiding to reduce the hardware overhead and complexity.

On the other hand, the use of page level granularity allows us to analyze how critical is the

block misclassification introduced with coarser grains. In addition, studies at page level

granularity are intended to identify the viability of applying cache coherency at page level

instead of block level.

Basically, we provide two kind of analysis. The first one, referred to as static analysis, is

intended to counting the number of blocks included in each category. The second one, referred

to as dynamic analysis, shows the number of accesses to blocks for each category. Both views

complement each other and allow us to identify which categories of blocks are the most

frequent and which ones are the most accessed.

The previous classification will help us later to identify which are the best optimization

opportunities when developing the appropriate coherence protocol. As examples, in many

works the producer-consumer access pattern (where one or more cores repeatedly write a

certain core, which is read only by others cores different from the writer ones) could benefit from

update-based protocols. In contrast, with invalidation-based protocols, this pattern induces a

large latency penalty. Also, blocks with no write operations on them could benefit from a

deactivation of the coherence protocol. In the next subsection we show the obtained results.

4.2.1. Analysis Results
All results shown are for the parallel phases of applications. The results presented are focused

on the data blocks or pages. As can be seen on the Fig. 14 and Fig. 15 the proportion of data

blocks and accesses is more relevant. Also, due to the fact that most of the instruction blocks

are shared through all four cores, the classification between Private and Shared instruction

blocks is less interesting in this case. Finally, we detected no interleaving between data and

instruction blocks at different page granularities.

 33

As commented before, the analysis will basically consist in counting both the number of blocks

belonging to each of the classes defined above (static analysis) and the number of accesses

realized on each of the block classes (dynamic analysis). This analysis is carried out

considering different granularities for data block classification, from block size until pages of

different sizes. In all figures, the results obtained for each of the analyzed applications, together

with the resulting average values, are displayed.

Fig. 14: Proportion of blocks distinguishing whether they are instruction or data blocks

Fig. 15: Proportion of accesses to data / instruction blocks

 34

Fig. 16 shows the block classification based on the detection of the Private-Shared Read-Write

scheme for every block requested at the different granularities aforementioned. First of all, it is

observed that, on average, 40% of data blocks are private (PR or PW). The remaining blocks

are shared (60%), but notice that indeed only 40% of data blocks are SW, that is, they require

coherence maintenance. However, this promising result vanishes as long as the granularity

used for classifying the blocks is increased. As can be observed, the coarser grain used, the

more shared and written blocks are found. In particular, for 4KB pages, the percentage of SW

blocks is greater than 60%, whereas this percentage, on average, exceeds the 80% for 64KB

pages. This means that SW blocks are concentrated in a certain number of pages, but they are

mostly distributed among them. As a consequence, the detection accuracy decreases as far as

the granularity is increased in order to simplify the detection process, leading to a

misclassification of page blocks. Notice that just one SW block contained in a page will cause

the page to be classified as SW.

Fig. 17 shows the dynamic analysis. It is observed that despite the fact that SW blocks just

represent 40% of the total number of blocks, as was shown above, they agglutinate tough the

larger number of accesses (60% on average). Further, the number of accesses to private data

blocks is indeed negligible. Unlike the static analysis, here it is observed larger differences

between applications. Also, the number of accesses classified as SW hardly increases as the

detection granularity becomes greater. On average, it reaches a 70% for 64KB pages. Notice

that this is an expected result as long as the highest percentage of accesses inside a page is

destined to SW blocks. Given that most of data memory accesses require coherence

maintenance, the design of the cache coherence strategy will be a key element to provide high

performance.

Fig. 16: Static analysis of block types

 35

In order to offer a deeper insight into the sharing degree of data blocks, let us analyze to what

extent they are shared, that is, how many cores share each of these data blocks. So, in Fig. 18

and Fig. 19 we analyze the number of sharers per block. If there are no sharers and the block is

only accessed by one core, it corresponds with a Private block detected in the previous

analysis. We consider also both static (Fig. 18) and dynamic analysis (Fig. 19). In Fig. 18, we

can observe how, on average, just two cores share about 20% of blocks, 15% are shared by

three cores, and 25% of them are shared by four cores. As the detection granularity increases,

the number of blocks shared by all the cores is larger. The reason is the same as that pointed

out with respect to Fig. 16. Moreover, from Fig. 19, it is observed that the most accessed data

blocks are those shared by all four cores. This result corroborates even more the importance of

carrying out an appropriate design of the cache coherence mechanism as far as a large number

of cores are usually involved in the coherence maintenance of the data blocks.

Fig. 17: Static analysis of blocks per number of sharers

 36

Until now, the analysis has been focused on classifying block by using different detection

granularities. However, it is also interesting to just classify pages. It may be important to assess

the convenience of managing cache coherence in a per page basis instead of the usual

strategies based on block tracking. In this case, page classification in PR, PW, SR, and SW

classes is as follows. A page is classified as SW when it contains at least a SW block.

Otherwise, it will be classified as SR if at least one of their blocks is SR. On the contrary, if the

page does not contain neither SW nor SR blocks, it will be classified as PW if at least it contains

a PW block. Otherwise, the page will be classified as PR. In this sense, Fig. 20 shows the page

classification for 4KB and 64KB page sizes. As can be seen, more than 35% of the 4KB pages

require coherence (they are SW), whereas this percentage increases until near 50% for 64KB

pages. This means that SW blocks are not spread over all the pages, but they are indeed

distributed between a limited number of pages, so much larger, the larger the page size is.

Fig. 18: Dynamic Analysis of blocks per number of sharers

 37

In order to offer a deeper insight into SW pages, from now on, SW pages become the focus of

our analysis. Firstly in Fig. 20 we classify pages per access type and subsequently in Fig. 21 we

discern the number of sharers on pages classified as SW. As can be seen, like it was observed

on analyzing block sharing, most pages are shared among three or more cores, as more as

larger the page size is. In particular, half of the blocks are shared between 4 cores for 4KB

pages, whereas the percentage exceeds the 60% when page size is 64KB.

As commented before, the main disadvantage of using page granularity to detect blocks

requiring coherence is the misclassification that page blocks may suffer. Notice that a single

block can determine the classification of the rest on the same page. To analyze this effect, in

Fig. 19: Classification of pages per type

Fig. 20: Classification of SW pages per number of sharers

 38

what follows, we study in depth the internal anatomy of SW pages. The study is performed by

considering the type that each block in the page had been assigned in case of having assumed

block granularity in the detection process. In particular, we proceed to count the number of each

of the block types contained in the page. Information is represented making use of box-and-

whiskers plots. This will help to determine how populated the pages are and the real

significance of block misclassification.

Fig. 22: Proportion of blocks per type on SW 64K pages

Fig. 21: Proportion of blocks per type on SW 4K pages

 39

Fig. 22 and Fig. 23 show results for 4KB and 64KB page sizes, respectively. First of all, it is

observed that pages are hardly populated, so much less, the larger the page size is. However, a

great variability is observed, from pages hardly containing a few blocks until pages crowed of

blocks. On average, the medium value of blocks per page is about 20 out of 64 for 4KB pages

and 80 out of 1024 for 64KB pages. Anyway, the precise distribution of the total number of

blocks and the number of blocks of each type can be observed in the aforementioned figures.

Regarding SW blocks, it can be observed that, for a page size of 4KB, most of the blocks in SW

pages are SW blocks, but when the page size is increased, the PW blocks become more

frequent. Despite this, the number of SW blocks present in the page is very small in relative

terms (on average, the 75% of 4KB pages have less than 12 SW blocks, whereas the 75% of

64KB pages have less than 25 SW blocks). These results may suggest the possibility of

applying fine grain detection techniques inside SW pages in order to isolate true SW blocks, so

limiting coherence maintenance actions to them.

We have also performed a dynamic analysis of SW pages in order to obtain the proportion of

store access (see Fig. 24). As can be seen in Fig. 24, around 30% of the memory accesses to

SW pages are stores. Obviously, these accesses will be destined to either SW or PW blocks.

This kind of studies allow us to assess the convenience of applying update strategies instead of

invalidate ones.

Fig. 23: Proportion of store accesses on SW pages

 40

Finally, it is carried out an analysis in search of the existence of producer-consumer patterns in

SW pages. Fig. 25 shows the proportion of blocks presenting the producer-consumer pattern

related to the amount of blocks requested within the page for different page granularities. As

observed this percentage is relatively small.

In order to definitively observe whether or not the producer-consumer pattern is relevant on the

analysis, we studied the percentage of accesses done to blocks presenting the pattern within

the SW pages. As can be seen on Fig. 26 not even the 0,003% of the accesses are done to

these blocks.

Fig. 24: Percentage of blocks with producer-consumer pattern

Fig. 25: Percentage of accesses to blocks with pattern on pages SW

 41

4.2.1.1. Conclusions for sharing patterns analysis
On average, about 75% of the blocks accesses and from 35% to 40% of blocks/pages

(depending on the granularity) on the analyzed applications correspond to instruction blocks,

which, unlike data blocks, do not require coherence maintenance. Moreover, despite the fact

that it is detected a high sharing degree of data blocks among cores, indeed only SW blocks

(just 40% of the total number of data blocks) require coherence. Considering accesses, SW

blocks agglutinate 60%, on average, of the total number of accesses. That means that if

snoopy-based coherence is used, the broadcast traffic reduction will be around 40%, while if

directory-based coherence is used, then the benefits will increase.

In order to ease data classification, different page granularity degrees can be used at the

expense of causing a loss of accuracy due to block misclassification. We observed that in the

case of block counting there is a high misclassification degree. As a counterpart, in the number

of accesses the degradation of classifying block or pages is lower.

Also, it is observed that SW blocks are not spread over all the pages, but they are indeed

distributed between a limited number of pages. In particular, less than 40% of data pages

require coherence. Deeping inside SW pages, we observe that they hardly are populated,

containing about 30% and 10% of blocks, on average, for 4KB and 64KB pages, respectively.

Among them, the number of SW blocks is the majority. Furthermore, about 30% of the accesses

to blocks of SW pages correspond to store operations.

Finally, it is observed that the impact of the producer-consumer sharing pattern in the analyzed

applications is negligible. Less than 1,5% of the blocks accessed in SW pages present such a

behavior, which discourages the application of update policies for coherence purposes in an

extensive way.

Further discussion must be done in order to decide which can be the best options among all the

coherence protocols in the literature, taking into account also the characteristics of the target

system of the study.

As aforementioned, the impact of producer-consumer pattern is insignificant and therefore an

invalidation-based protocol would be the best choice, which also will reduce the amount of

cache-to-cache traffic and consequently reduce the amount of cache bandwidth and energy

consumption.

As seen on the analysis results, we found that for page granularities most blocks and accesses

are classified as SW and, therefore, it may not be suitable a technique based on coherence

deactivation at page level. However, with block granularity it is observed that 60% of blocks do

not require coherence. Therefore, a fine grain detection inside SW pages may be interesting, at

the expense of introducing additional hardware support. That means that in the possible case of

applying of coherence deactivation techniques would be convenient to meet a suitable trade-off

between accuracy and introduced overhead.

 42

The main benefits obtained through the use of these techniques are related to the energy

reduction deduced from the lowering in coherence messages. It also improves the execution

time of the system.

On the other hand, other techniques more focused on snoopy-based protocols and

interconnection networks can also be applied. Most filtering techniques are based in reducing

energy consumption by means of filtering unnecessary snoop traffic. Also, this kind of proposals

may take benefit of the low misclassification degree introduced for data accesses, therefore

using a technique classifying blocks at page level and relying on the OS support to do so.

4.3. Compression Opportunities
In this section we analyze the compression opportunities for the target system in the project and

the provided applications. First we briefly describe the main techniques proposed so far which

are the ones that are the target for the project (you can find more information about them on

classical literature such as [Sal04]):

• Zero elimination: this kind of techniques compresses code or data by eliminating long

strings of zeros, either by codifying them or by just removing them. From the many

techniques that fall into this group those that remove zeros seemed the most interesting

to us. In order to be able to eliminate part of a message without further coding, this part

must be aligned (word aligned, block aligned,... depending on the particular technique).

• LZn: the basic idea of this method is to use part of the input stream as a dictionary,

maintaining a sliding window divided in two parts: the search buffer (left, already coded)

and the look-ahead buffer (right, to be read). When a match between both buffers is

found, a pointer to the occurrence in the left buffer is created and sent instead of the

occurrence in the right buffer.

• Table-based compression techniques: this kind of techniques creates tables with highly

frequent patterns and avoids sending the whole pattern by sending the index in the

table instead. There are many different techniques according to different philosophies,

but they don't require compressible data to be aligned or its occurrences to be

consecutive.

As we have seen, there are many different compression techniques and they imply different

data analysis. In order to be able to choose the compression technique that best suits our

particular case of study, we have obtained a variety of data statistics not to constraint the final

decision derived from applying our analysis method. We have thus used three analysis

strategies to find repeating patterns:

• Aligned Consecutively Repeating Patterns (ACRP). Patterns in this category are

consecutive and aligned to byte size. One example is “000000010000000100000001…”

where the pattern “00000001” is repeated three times (consecutive repetitions) and is

byte aligned.

 43

• non-Aligned Consecutively Repeating Patterns (nACRP).. This category groups those

patterns that are still consecutive but not necessarily aligned to any data size. One

example is “1111000000010000000100000001…” where the pattern “00000001” is

repeated three times (consecutive repetitions) and is not byte aligned.

• non-Aligned non-Consecutively Repeating Patterns (nAnCRP). This category groups

those patterns not necessarily aligned to any data size and not consecutive, this is: a

pattern that is repeated along the trace but we do not consider if it is consecutively

repeated or not. One example is “111101111001000000111110000011111111…”,

where the pattern “1111” is repeated 5 times (not necessarily consecutive) and

alignment is not considered.

Notice that the ACRP category helps us in localizing the occurrence of long strings of aligned

zeros (for zero elimination case). However, in order not to lose generality, we localize also all

patterns that have the properties referred above. In this case, the nACRP category is also

relevant, because it allows us to study the suitability of LZn techniques. In turn the nAnCRP

category allows us to assess the convenience of applying table-based compression techniques.

The relationships between compression techniques and analyzed pattern categories are shown

in Fig. 27.

4.3.1. Analysis Results
First, we analyze in detail, in the three following subsections, the application OpenSSL with the

algorithm sha1; and in the forth subsection we compare the obtained results against the other 4

algorithms. Finally, in the fifth subsection, some conclusions are drawn. In all subsequent

analysis, pattern size is one byte, block size is 512 bits (64 bytes) and, when applicable, byte

alignment is used.

4.3.1.1. Aligned consecutively repeated patterns (ACRP)
We first present a graph with general information with the number of occurrences of ACRP

patterns. Fig. 28 shows the results where X axis is the number of consecutive repetitions and Y

axis (left) is the total number of occurrences. Notice that Y has a logarithmic scale. The figure

also shows the variability (right Y axis) in the number of total occurrences among the different

patterns that have the same amount of consecutive repetitions. When no red line is present,

either only one pattern exists for that category or all included patterns have the same number of

Fig. 26: Relationship between studies made and compression techniques

 44

occurrences (less likely to happen). Note that in most cases, when no variability is present, all

patterns are made of all-zero strings.

2
3

4
5

6
7

8
9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

34
35

36
39

40
43

44
46

47
48

51
54

55
56

58
59

60
61

62
63

64
1

10

100

1000

10000

100000

0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000

Patterns per consecutive repetitions (aligned)

Total and variability

Total
Variability

Consecutive repetitions

To
ta

l i
n

lo
ga

rit
m

ic
 b

as
e

The first thing to notice is the large disparity in the number of occurrences of patterns (notice the

logarithmic scale). Large occurrences of ACRP patterns occur either with low repetitions or with

large number of repetitions. This figure demonstrates that ACRP patterns exist and thus, there

is an opportunity to compress those patterns.

In Fig. 29 we can see the most interesting (most frequent) ACRP patterns found. We select

those ACRP patterns with at least 1000 total repetitions. The number of total repetitions is

obtained by performing the product of consecutive repetitions by occurrences. The bubble size

represents the proportion of total data constituted by this pattern. One first outcome is the fact

that the set of interesting ACRP patterns represents a large amount of traffic (92.86% of traffic)

with only a small number of patterns. The rest of detected patterns represents 0.54%,

conformed by many different patterns repeated only a few times. This means a large potential

exists to compress data traffic. Most interesting is the fact that the largest part of ACRP patterns

is made of all-zero streams. Also, the largest set corresponds to long streams of zeros, those

represented by the two largest bubbles at the upper right side of the figure.

Fig. 27: ARP total occurrences per number of consecutive repetitions.

 45

Fig. 28: Non aligned consecutively repeated patterns

Since we noticed in the previous graph that most compressible data is composed by long zero

strings, we now analyze other alignments of zeros. In this case we care about the block size, as

will be the default transmission data size (blocks between caches). Notice that we will compress

within individual messages and not between data stretched over several blocks/messages. Fig.

30 shows the amount of ACRP all-zero patterns for different string sizes (quarters of a block)

and different alignments (not-block aligned, aligned to block, aligned to end of a block). As can

be seen, the vast majority of ACRP repetitions correspond to large strings (either 48 or 64 bytes

in length) and they are practically always block aligned. This will simplify the compression

mechanism to be used in the final system.

 46

Fig. 29: ACRP quarters of blocks of aligned zero strings

The graph on Fig. 30 shows the blocks as block start/end-aligned to quarters of block. In order

to understand what this really means we can see an example on the Fig. 31. In this figure we

observe that data must be at least a quarter of block long to be compressible, but is not

mandatory that it is aligned. Although some data compressible with other techniques is not

compressible with this one, this technique has the advantage of simplicity and low hardware

overhead, so it must be analyzed. To end with Fig. 31, it is easy to see whether the block is start

or end-aligned observing the blue bars.

4.3.1.2. Non-aligned consecutively repeated patterns (nACRP)
Fig. 32 shows non-aligned consecutively repeated patterns (nACRP). The X axis corresponds

to consecutive repetitions and the Y axis represents the total number of repetitions (the product

of consecutive repetitions and the number of occurrences of these, which is the amount of data

Fig. 30: Example of block aligned zero strings

 47

compressible). The bubble size is determined by the percentage of bytes of the total. The

threshold chosen is 1000 total repetitions. With this threshold we capture 93.45% of the

patterns. We can observe that compressible zero strings conform 100% of total interesting data

according to this analysis. Notice that these results are similar to the ones achieved for the

ACRP case, indeed, the only difference is whether patterns are found aligned or not. As we

have many aligned patterns, they also are detected in this analysis and, thus, make results

quite similar.

The interest of non-aligned patterns comes from the fact of using compression techniques like

the LZn one. However, if the occurrences of most patterns are aligned, it may induce us not to

consider non-aligned ones. Indeed, using both techniques (aligned all-zeros detection and non-

aligned LZn method) may not be beneficial.

4.3.1.3. Non-aligned non-consecutively repeated patterns (nAnCRP)
Fig. 33 and Fig. 34 show non-aligned non-consecutively repeated patterns (nAnCRP). The small

cake indicates the percentages from total represented by the big one (96.60% and 95.28%

respectively).

Non-aligned non-consecutively repeated patterns are difficult to analyze, since we find a

combinatorial explosion when trying to obtain all possible combinations (excluding overlapping

Fig. 31: nARCP total repetitions (consecutive repetitions x occurrences) per pattern.

 48

patterns) of all patterns. There is thus a trade-off between completeness and time consumption

for the analysis. We chose to select patterns in order with two different priority schemes: first

prioritizing 0's strings (Fig. 33, from 00000000 to 11111111) and then prioritizing 1's strings (Fig.

34, vice versa). We do this to show that no matter what order we choose to select patterns

(even if the scenarios are opposite), zero byte strings are of most importance (97.44x96.60 =

94.13% and 91.06x95.28 = 86.76%) for compression.

Fig. 32: nAnCRP most repeated patterns (starting by "00000000")

Fig. 33: nAnCRP most repeated patterns (starting by "11111111")

 49

4.3.1.4. General Analysis of Compression Opportunities for
applications

In this subsection we compare the statistics obtained for OpenSSL with algorithm SHA1, that

have been profusely analyzed in the previous three subsections, with the other algorithms to be

considered, i.e. SHA256, SHA512, AES-128-ECB and AES-256-ECB.

We start with a comparison of the general behavior of the data obtained for all algorithms; then

we analyze the apparently promising Aligned Zero-Quarters of Block option; to finish with a

comparison of the particular patterns designated as the most interesting according to our

criteria.

Fig. 34: General Trend Comparison.

In Fig. 35 we can see that the pattern repetition behavior of all the algorithms is very similar for

the three repetition schemes analyzed. However, for all the algorithms, nAnCRP exhibits the

higher compression opportunities, but notice that this repetition scheme implies a higher

complexity. So we must find a compromise solution.

Fig. 35: Aligned Zero-Quarters of block Comparison.

 50

In Fig. 36 we observe that the algorithms studied fall into two different groups, that we can name

SHAn and AES-n-ECB. The SHAn algorithms show more blocks with 64 bytes of zeros (ranging

from about 22% to about 27%, against the average of about 12% of the AES-n-ECB

algorithms). On the other hand, AES-n-ECB algorithms show more blocks with (three quarters

of block) 48 bytes of zero strings (an average of about 44% in comparison to the 32% to 36% of

SHAn algorithms). Halves and quarters of block (16 and 32 bytes of zeros) are of relatively low

importance in both families of algorithms, so we must focus on elimination of either three

quarters of block or entire blocks of zeros.

In the reminder of this subsection, we show a comparison of the most interesting patterns for

each algorithm and each technique. We consider interesting patterns those with a number of

total repetitions (consecutive_repetitions * number_of_occurrences) of 1000 or more. We first

analyze in Table 2 and Fig. 37 nAnCRP that includes a greater variety of patterns and then show

statistics for nACRP (Table 3) and ACRP (Table 4), where 00000000 is the only pattern that

reaches the aforementioned threshold.

(nAnCRP) SHA1 SHA256 SHA512 AES-128-ECB AES-256-ECB
00000000 94,13 93,78 93,98 93,37 93,26
00000001 1,19 1,34 1,28 1,55 1,60
00000010 0,18 0,24 0,26 0,26 0,32
00000011 0,28 0,34 0,37 0,29 0,28
00000100 0,10 0,11 0,10 0,10 0,10
00000101 0,24 0,32 0,33 0,44 0,43
00000110 0,09 0,10 0,00 0,00 0,00
00000111 0,11 0,11 0,12 0,11 0,14
00001001 0,13 0,13 0,13 0,12 0,13
00001011 0,00 0,00 0,10 0,00 0,00
00001101 0,16 0,09 0,08 0,12 0,08
10011010 1,58 0,08 0,09 0,22 0,14

Table 2: Comparison of Most Interesting Patterns (nAnCRP).

In Table 2 we have highlighted those patterns that were not included among the interesting ones

for an algorithm by assigning them a zero value and writing them in red color. The interesting

patterns are quite similar for all algorithms and the percentages represented by them are very

similar as well. Thus, there can be observed that a dynamic table-based technique would take

profit of this pattern repetition. Moreover, zeros represent over 90% of the data in all cases, so it

can also be induced that the compression techniques to consider hereafter should be zero

elimination techniques. In Fig. 37 we can see the same information graphically.

 51

Fig. 36: Most Interesting Patterns Comparison (nAnCRP).

Table 3 and Table 4 show that the proportion of zeros in both repetition schemes (nACRP and

ACRP) is very high and very similar. We can deduce that most zero strings are long

(consecutive repetitions of zero byte strings) and many of them aligned to byte (since

percentages for ACRP are just a little bit lower than for nACRP).

(nACRP) SHA1 SHA256 SHA512 AES-128-ECB AES-256-ECB
00000000 93,45 93,26 93,42 92,83 92,74

Table 3: Comparison of Most Interesting Patterns (nACRP).

(ACRP) SHA1 SHA256 SHA512 AES-128-ECB AES-256-ECB
00000000 92,86 92,53 92,79 92,22 92,00

Table 4: Comparison of Most Interesting Patterns (ACRP).

4.3.1.5. Conclusions for compression opportunities
From the previous analysis we have different conclusions:

1. The most important streams of data are made of all-zeros. This means that those

streams should be the primary focus for compression opportunities in the project.

 52

2. All-zero compression methods should be prioritized, analyzed and researched within the

project.

3. Block alignment represents a large hit rate for all-zero streams, thus easing the

implementation at the NoC level of such compression mechanisms. Techniques dealing

with different block sizes (quarters of blocks) should be researched within the project.

4. Techniques focused on non-aligned patterns do not seem to be interesting for the found

patterns. Thus, techniques as LZn seem out of place for the project.

5. Non-consecutive patterns, although largely found in the applications analyzed, will be

largely covered for the all-zero streams. Indeed, most of the non-consecutive patterns

are made of all-zero streams.

5. Virtualization Requirements
Virtualization has been spreading in the IT server area at a fast rate in the last years. It provides

an added value in resource usage such as CPU and disks, allows better flexibility, better fault

tolerance and moreover better resource occupancy. Virtualization in the server area gives to IT

managers and administrators an unprecedented optimization rate of hardware resource usage,

together with services to ease management of these resources. The generalization of server

farms usage in the context of Cloud Computing is making extensive use of virtualization

technologies, hence promoting them to the rank of mandatory capabilities.

In embedded systems the situation is very different from what is observed in the server area.

Virtualization technologies are barely used, or barely visible to the device user. Although

virtualization is present in some consumer-electronic devices, it serves mostly to provide

maintenance capabilities. Whereas the benefits of virtualization in the server area are nowadays

quite clear, it is relevant in the frame of the vIrtical project to firstly present domains where

virtualization can provide an added value for embedded systems. Secondly a more technical

requirements analysis is presented which is more related to virtualization technology. Finally

non-technical requirements are addressed to complete the area.

5.1. Domain requirements
Among many domains using embedded systems, the following ones are those of primary

interest for the vIrtical partners:

 Telecommunications

 Consumer Electronics

We also done additional research for some domains which are not in the scope of vIrtical but in

which safety and reliability constraints play an important role. Virtualization is already used in

 53

some of these domains to cope with the existing constraints. The vIrtical approach for

virtualization can bring additional benefits such as security. These domains are :

 Automotive and Vetronics

 Transportation

 Avionics

The virtualization requirements and potentialities are presented in the following sections.

5.1.1. Telecommunications
The telecommunications market has evolved very rapidly in the recent years, mainly due to the

nature of the traffic conveyed by networks. Whereas it was dominated by voice and fixed

terminals in the 90's (PABX, modems, Public Switched Telephone Networks), it is now

dominated by data and mobile terminals (ADSL, VPN, VoIP, VOD). The nature of this traffic is

very diverse, ranging from TV over ADSL to peer-to-peer networks. Quality of service is not

currently handled from end-to-end, due to the heterogeneity of the resources and protocols

networks involved in the networks.

Enhancing resource reservation for networks

In most IP switches and routers, traffic shaping is achieved using information stored in Ethernet

frames (DSCP field). The functionality is implemented according to a best effort scheme with no

strict resource reservation. Virtualization can provide such resource reservation for each class

of traffic. Additionally it can provide resource separation to enable fault-tolerance within routers

and switch between critical administration and configuration functions that require a limited

amount of resources but an all-time availability (management plane), and traffic handling that

requires most of the resources with good availability (data plane).

Enhancing traffic handling for mobility

Mobility raises a number of problems not addressed by conventional routers and switches. The

capability of mobile devices to switch from available 3G, WIFI, bluetooth, Ethernet or 4G

requires the equivalent level of adaptation from the infrastructure that is routing the traffic.

Intelligent routers and switches are needed for this purpose. In this respect virtualization can

provide a support for base services similar to what exists in conventional equipment, along with

a capability to host application support for the new services layer that handles the versatile

terminals communicating capabilities.

5.1.2. Consumer Electronics
Post-PC era is about a world in which new devices with a true cultural impact, (Your life is in

your device, your media and your information are always “there”, boundaries between work,

home, and friends vanish,) surpass the desktop and laptop, in numbers deployed and in

 54

economic and social impact. In this context set-top boxes (STB) and Smart TVs are evolving

from the traditional services, Broadcast, Decode & Rendering and Video On Demand, provided

by TV operators toward over-the-top (OTT) video applications with additional internet

applications, local multimedia hub and craddle. Operators can use such STB to provide

interactive OTT services for broadband users, thus increasing the added-value of broadband

network and the user scale. STBs and Smart TVs are becoming connected interactive and open

platforms. The interactive services will evolve on top of the traditional services. Some of the

today examples are the new interactive content created for WEB access such as documentary,

sports, content aggregation can turn Youtube into your own Music Video channel or enabling 7

days Catch-up Service to go in the past to replay your favorite programs. The next generation

services will include Home automation and smart metering as well as personal services such as

healthcare, productivity, learning, leisure. In order to support the market trends the ST vision is

focusing to reduce the environmental footprint, to enable new user experience and to open up

the platform. All the new architectures developed by ST are based on ARM Core allowing ST to

strongly leverage on the leading European low power CPU roadmap and a broad software

ecosystem. In addition ST brings the strong knowhow on security, system integration, HD video

decoder and silicon technology. From the software standpoint ST needs to support several

technology enablers such us Linux, Android, DVB, HTML5, gsstreamer, Adobe Air etc. as

shown in Fig. 38.

Fig. 37: Technology enablers to be supported.

Virtualization already has impacted the server and IT industries in a significant way. The trends

to adopt virtualization in the consumer space, in particular to STBs and Smart TV, are being

 55

driven by the fact that these platforms are becoming open. Each product has its own specialized

list of time consuming social networking and on-demand video contents of available apps that

could be downloaded by the user. In addition products allow to view content from the Internet on

your smart TV through specialized apps (Netflix*, Napster, Facebook, browser etc.). These apps

are designed to work specifically and very smoothly with the television experience.

Vendors are working on virtualization technology to separate broadband services (such as

Android) from the broadcast services (such as NDS, HbbTV) available within the “Walled

Garden” via multi compartment that can be implemented by the virtualization technology.

 In particular, virtualization allows STB or smart TV to run multiple virtual machines

simultaneously enabling the consolidation of hardware and contributes the increase for

utilization rates. This means that multiple middleware or OS can run on a single device

simultaneously, with many cross-platform applications scenarios possible, and this promotes

interoperability among heterogeneous systems. In smart home environment with high degree of

heterogeneity in terms of services, virtualization will provide to the home dwellers the option to

select the suitable operating systems for each application/service. In addition virtualization

allows STB and Smart TV to maintain a degree of support for legacy systems while upgrading

to new hardware and services. In this sense legacy services (even when operating systems and

platforms are no longer supported by manufacturers) can be still used by running in a virtual

machine. This feature enables saving hardware and operational costs.

Last but not least with virtualization the complexity of remote management of STB or smart TV

is reduced tremendously because virtual machines are completely decoupled from the physical

devices. Adding or updating a new service, there is not anymore the need to shut down the

device, giving to the home dwellers a feeling of robustness.

In this new post PC world, STB and smart TV need to be more intimated and connected with

other embedded devices that consumers keep close to their bodies, and more physical, as

mouse and keyboard are replaced today by touch screens. As this post-PC world evolves,

facial recognition, voice sensors, and motion sensors will become controllers, increasing the

intimacy and physicality of our relationship to technology and devices. For them to grow and

dominate these great devices will rely upon increasingly powerful access networks and

infrastructure. One of the biggest challenges in home entertainment and media servers is

managing the content and securing the sensible information of Home dwellers (passwords,

identification data, geolocalization ...). By providing isolation capabilities and untamperable

emergency modes (accessible from the network) for erasing permanently this information,

virtualization can bring the necessary security mechanisms that smartphones are currently

lacking.

Home dwellers deals with various content of music, pictures and movie, often ended up

accessing these contents from different devices. This kind of situation creates hassle for

dwellers as they need to switch to different devices each time when it comes to access some of

these contents. Virtualization could solve this issue by deploying content virtualization in a

 56

distributed home platform. This could enable service providers to port, integrate, and build

media and service management efficiently of the media contents in home environment.

Streaming media like Video-on-Demand (VoD) could be utilized from different sources,

especially from media providers using virtualization technology. It is expected that all digital

contents in smart home settings will be integrated into a virtualization pool that is always

available for home dwellers. This virtualized pool will automatically manage functions like

synchronization, content distribution, Quality of Service (QoS) and perform discovery of content

and devices in the smart home environment. Virtualization also will ensure organization, tagging

and analysis for all the stored entertainment content in efficient manner. On the other hand, it

paves the way for activity recognition of home dwellers based on their use and access made for

retrieving those contents. Virtualization technology also could be the key contributor for moving

or ‘movable’ multimedia especially in creating session mobility that provides seamless transfer

of multimedia session between different devices and contents based on home dwellers

preferences.

So far virtualization we have described how important is the virtualization for the next generation

of STB and Smart TV. In order to be acceptable from system point of view, it is important that

the drawback in term of performance penalty is acceptable. In order to overcome these

performance overheads, one solution is to implement para-virtualization instead of full

virtualization. However running unmodified guest operating systems is desirable, so hardware

vendors (ARM, INTEL, AMD) have started shipping extensions to their processors so they are

efficiently virtualizable. In that case, when a Hypervisor may take advantage of the hardware

support for efficient virtualization, the system is said to support Hardware Virtualization.

Therefore for STB and Smart TV using hardware virtualization is a strong requirement for

performance reasons. In addition, linux is becoming the de-facto standard open source

operative system used in the majority of STB and Smart TV therefore it is important that the

virtualization technology is open source and fully integrated with linux.

Since in vIrtical, we are going to focus more home gateway, the following section described

better from system point of view the key functions that will be integrated in the coming

generation of products.

A home gateway is a consumer electronics product, potentially leased to the end user by a

multiple service operator (MSO), which combines functions which previously have been

provided by multiple discrete devices. For example, combining the following functions:

• Broadband Modem (e.g. DOCSIS/ADSL/FTTx)

• VoIP telephony adaptor (e.g. PacketCable)

• Router with WiFi + gigabit Ethernet

• Home automation controller

• Media Server (Potentially an open s/w stack allowing downloads from multiple sources)

The user expectation of such a device stems from the original system where a malfunction in a

media server would not cause interference on a telephone call. Here the requirement for

virtualisation is clear: to provide a route to significant cost & energy savings by combining

 57

multiple functions on to a single host CPU, while maintaining the level of reliability achieved with

discrete systems.

The MSO expectation of such a device covers both the reliability of billable services (e.g.

telephony, broadband data access, video on demand) as well as requiring strict isolation

between sensitive information used by each compartment/guest from another (e.g. modem

authentication certificates, DRM keys, home automation authentication).

The reliability of the subsystems will be defined in terms of robustness (ability to operate in the

presence of a malfunction in another guest) and in terms of QoS (reserving enough processing

power to guarantee certain key functions during times of high CPU load – e.g. VoIP).

It is likely that a home gateway based upon a multiple guests running concurrently will require

clean resource sharing for functions such as:

• Non-volatile Memory system

• Networking system

It is expected that this market will share some of the same requirements as both the STB and

Telecommunications markets.

Smartphones and in a lesser extent tablets have invaded the industrialized countries. Their

success is largely due to the large number of applications available, their ease of use, and the

capability of mobile networks to handle them with 3G or 4G technology.

Coexistence of corporate and personal usage

Smartphones are used everywhere, in the personal sphere and also in the corporate sphere.

The problem raised by the separation of data has been raised several years ago with the use of

Blackberry devices in governmental entities (e.g. French government in 2007). Having one

smartphone for each sphere is not very practical, but having the same device for all sphere

raises confidentiality and privacy concerns. Virtualization can provide the necessary separation

needed between private and corporate data, and also between private and corporate contexts

(network access, user authentification, applications access ...)

Protection of sensible information

In a given sphere, personal or corporate, there is some information which is more sensible than

other (passwords, identification data, geolocalization ...). There is absolutely no warranty that an

application (available from the market or the store) cannot access this data and leak it outside

the terminal. There is also no warranty that in case of theft none could access this data. By

providing isolation capabilities and untamperable emergency modes (accessible from the

network) for erasing permanently this information, virtualization can bring the necessary security

mechanisms that smartphones are currently lacking.

 58

5.1.3. Automotive and Vetronics
In automotive, the number of electronic and computing devices embedded in a single car has

grown tremendously in the last ten years.

Providing better reliability and better maintainability

In order to provide better reliability overall, these systems are being mutualized. Maintainability

can also be enhanced by having “generic” platforms (constructor-independent) hosting specific

functions (constructor-dependent).

Providing more cost-effective driving aids

Although the automotive market, due to its very concurrent nature, is heavily cost-driven for the

choice of equipments, some moderately critical functions such as driving and parking aids may

benefit from virtualization when compliance to some safety standards has to be done in a

worldwide market. These equipments could be certified in an incremental fashion, which would

allow both a platform market for car equipment makers and a degree of flexibility for car

manufacturers to choose which applications are implemented on these platforms.

5.1.4. Transportation
Ground transportation systems are subject to certification compliance process similar to what

exists in airborne systems, but the constraints are different mainly due to the fact that the

environment is not dangerous by itself. Stopping a train or a metro is always an option, which is

not true for aircraft.

Widely used in rail signaling, the SIL certification defines several levels depending on the

criticality required for the equipment in the system. To separate critical functions from non-

critical ones on the same equipment, and to monitor critical functions, virtualization can provide

the base infrastructure to achieve the required criticality level. Functional correctness and

behavior in case of fault are the main requirements virtualization has to provide answers for.

5.1.5. Avionics
Safety regulations impose a high degree of reliability of all aeronautics equipment. It covers

among others, the manufacturing process, the functionality correctness, the fault tolerance, the

lifecycle management. The certification process is standardized worldwide and is declined in

several levels for both software and hardware equipment. For software the DO-178 B is an

international standard and covers a range of levels from A (most critical systems) to E (less

critical systems). In order to achieve compliance to most critical levels (A to C), it is common

practice to have multiple redundant systems providing the same function.

 59

Integrated Modular Avionics (IMA) has provided a great benefit by introducing the capability of

coexistence of several functions on the same equipment, with the strong requirement to be able

to prove functional independence, including in case of failure. In particular a failure of a function

shall not trigger failure for other functions coexisting on the same equipment.

The ARINC 653 norm, elaborated in order to specify the properties needed by the IMA platform

in order to support such applications is an example of platform virtualization for applications,

based on a temporal share of hardware resources. Determinism of execution of applications is

the main resulting capability provided by IMA.

Mixing critical levels

However, the IMA approach already addresses specifically the coexistence of functions with

mixed criticality levels (for instance mixing level B and level D functions), since it states that the

most critical level imposes its compliance. Virtualization in avionics provides the necessary

capabilities to mix several criticality levels.

Mixing critical and non-critical levels

Today in most planes all electronic equipment has to be switched off at specific phases of flight

(takeoff and landing). In-flight entertainment systems, although part of the aircraft, are similarly

not usable during these phases. Cabin crew resources and IFE (In-Flight Entertainment)

resources are usually completely separate although they use a number of similar functions such

as message broadcast and call notification. Virtualization with adequate priority handling

mechanisms is able to provide mutualization of these functions (cabin crew first, IFE next), as

well as a potential for more services (multicasting, geographical routing on large planes), not

achievable with currently separate systems.

Enabling external communications

External communications are very limited from an airplane. Similarly to what is now possible

with high-speed trains, it could be envisioned that communications originating from terminals

such as smartphones could be relayed by an on-board equipment to the ground. Virtualization

here would help in handling resources of this on-board equipment with added airborne specific

issues such as weight, power consumption and operating temperature range.

5.2. Technical requirements
The technical requirements are based on the following model for virtualization, where

• The virtualization is provided by 2 hypervisors: one supporting the full virtualization for

the not ARM Non-Secure Execution Environment and one supporting the para-

virtualization for the secure environment. Depending the application domain we can use

both hypervisors or only one,

 60

• The compartments (or Virtual Machines) can accommodate an Operating System or a

simple API above which an application is running.

The resource management is delegated to the secure environment.

Fig. 38: Virtualization model

There are other virtualization alternatives than the one presented, however they are not in the

scope of current vIrtical activities. Their presentation in detail is beyond the scope of this

document and there are many references publicly available for more information.

5.2.1. Isolation between compartments
Isolation between compartments is the main advantage provided by virtualization. It is usually

split in two categories: temporal isolation and spatial isolation.

5.2.1.1. Temporal isolation
Temporal isolation is the main feature in ARINC 653 compliant systems. It states that each

compartment temporal execution is not affected by operations carried out in other

compartments.

A common practice to achieve temporal isolation consists in allocating one or several time slots

within a period to each compartment without overlap between them, and bv scheduling

compartments execution by the hypervisor. The CPU resource is shared, in a timely fashion by

compartments.

 61

In multi-CPU this can be extended by pre-allocating one or several CPUs to each compartment,

for each time slot, again with no overlap.

5.2.1.2. Spatial isolation
Spatial isolation refers to the capability of partitioning the memory resources among

compartments. Each compartment is granted access to only a subset of the whole addressable

memory. By doing so, no communication is possible between compartments.

When some degree of communication is needed between compartments, the hypervisor is

handling the memory corresponding to the communication facility by making it accessible to the

compartment when it is operating.

Spatial isolation requires that the hypervisor has full control over the memory mapping for all

compartments and more specifically full control of the MMU.

Systems having real-time constraints use temporal isolation and spatial isolation together.

However there is a systematic penalty to reaction to external events caused by the temporal

allocation of compartments.

Reactive systems based on external-events can make use of spatial isolation only to overcome

this limitation, but they are unable to ensure CPU resource reservation to critical tasks that are

not event-driven.

5.2.2. Communications between compartments
Strictly isolated compartments use cases are quite rare for embedded systems. Controlled

communication channels are very often needed to exchange information between

compartments.

Depending on the application constraints, different communication channels are needed :

• Unidirectional FIFOs

• Shared memory

• Mailboxes

• Semaphores

• Virtual channels : e.g. virtual Ethernet channels

Properties attached to these communication channels are very important and they are usually

under the control of the hypervisor. However some communication channels such as shared

memory can be accessed without control by two or more compartments. This is especially true

for multi-processor systems. Therefore when some additional properties need to be assessed,

care must be taken in the selection of communication channels for an application.

5.2.3. Resource sharing and reservation among compartments
Many resources can theoretically be shared by compartments. They are:

• CPU

 62

• memory

• GPU

• co-processors (SIMD)

• DMA controllers

• peripherals

• buses

• caches

5.2.3.1. CPU
Virtualization inherently shares CPU time among compartments. However some parts of the

CPU are not virtualizable per-se, such as performance counters and timestamp counters. Since

they can be reset but not reloaded with specific values, they are quite often not made visible to

the compartments by the hypervisor. The virtualization of performance counters would allow

compartments to monitor performance relatively to their own activity.

Memory

Whereas virtualization provides time partitioning by controlling CPU time allocations, it provides

spatial partitioning by controlling the memory ranges allocated to each partition. Since the

hypervisor must have full control over these memory ranges, compartments have access to

virtual memory only, and the hypervisor controls entirely the MMU.

Since several CPUs and peripherals can write to memory, the hypervisor has to maintain the

consistency of all memory areas under its control. Memory remapping for a peripheral is a

minimal option but does not allow sharing the peripheral by different compartments.

GPU

Due to very high performance requirements, CPU and GPU are very tightly coupled. They share

large ranges of memory located in central memory and in GPU device. The CPU offloads some

graphics computations depending of the capabilities of the GPU to handle them more efficiently

than the CPU. Graphics display is done independently from graphics computations, with CPU or

GPU being at the initiative. To complete the overview, many high-performance GPUs are driven

by proprietary software and firmware, which is in all cases very specific to the GPU vendor.

Most hypervisors have little or no knowledge of the GPU, so the baseline for driving it is by

using the baseline common modes, which are VGA and framebuffer. In such case all operations

are carried out by software on the CPU (no offload by the GPU) and are altogether limited in

capabilities, and costly in CPU cycles.

What is needed for hypervisors is GPU drivers to enable today display capabilities (high

resolution beyond VGA) and use corresponding offloading functions provided by the GPU

making the GPU visible to the hypervisor.

 63

Co-processors (SIMD, DSP)

These resources are used as accelerators for some specific, domain-dependent (video)

computations. They are usually programmable and either associated to one CPU or accessible

to all CPUs. In all cases, the sharing support of these devices by virtualization requires that their

command, control and status registers shall be under exclusive control of the hypervisor and

that their state shall be saved and restored at each compartment reschedule. For co-processors

associated with a CPU and which usually share the same caches for data accesses, there may

be some additional impact on cache management.

DMA controllers

Since a DMA controller is transferring data to and from main memory and operates

simultaneously with the CPU, but out of its control, both in time and memory range, the DMA

controller is as such not usable in a virtualized context. In order to use DMA controllers the

following bounding rules have to be enforced:

• Bounding in time, by enabling the CPU to suspend a DMA operation in progress, for

instance whenever a new compartment is scheduled by the hypervisor, and to resume it

later on, whenever the previous compartment is rescheduled.

• Bounding in space, by making sure that the hypervisor does not allow any setup of the

DMA controller memory ranges that would be incompatible with memory ranges allowed

for a compartment. This involves some knowledge about the behavior of the DMA

controller by the hypervisor.

Peripherals

Sharing peripherals among compartments is a daunting task due to the unlimited variety of

peripherals available. As a general rule, virtualization limits its role to exporting memory ranges

handled by a given peripheral to a unique compartment and by making sure no other

compartment can directly access this peripheral. This is the simplest case of partitioning

feasible. This approach is satisfactory for low-performance peripherals such as serial lines or

GPIO devices. Virtual peripherals can be used by other compartments with data dispatching

from the compartment handling the physical device to other compartments manipulating data to

and from the device. However for high performance peripherals this approach has serious

drawbacks since it enables only part of the device capabilities (and resulting performance) to be

used. Furthermore there are cases where sharing a peripheral by several compartments is a

need. For instance, network interface cards and components are supporting several physical

links connected to one multichannel MAC component. Such devices are virtualizable on a per-

channel basis provided that the hypervisor has knowledge of the device and that the system

integrates some memory protection for the I/O (IO-MPU IO-MMU).

Busses and NoC

 64

Since busses are the places where all transfers occur, the bus management is of prime

importance for virtualization. As such bus controllers have to be under exclusive control of the

hypervisor. It is true for the main system bus, but also for peripheral busses and for subsystem

busses such as USB. Since management of these latter busses is somehow complex,

management of such busses is limited at hypervisor level to opening the needed memory

ranges to a compartment and leaving the control of the bus to this compartment only. This

sharing of busses is actually very limited.

By providing more capabilities (partitioning and routing) than busses, NoC are full of potential

for virtualization. Datapath access control can be gated by hypervisor, dataflow can be

prioritized and spatially routed, fault-tolerance can be obtained by redundant data paths inside

the NoC. Furthermore, coupling with IO-MMU can be established as a rule for peripherals

access.

Caches

Caches are very useful for providing better overall system performance. But their stateful

character is a huge problem for predictability, needed for certifire/evaluated/realtime systems.

The generalization of multicores in embedded adds a second problem, linked to the cache

sharing among several cores. To deal with predictability issues, the solution is not to disable all

cache operation in the system, since performance is dramatically affected. In most of the

application cases, a compromise between performance and predictability is reachable. To do

so, the cache subsystem has to integrate capabilities usable by the hypervisor such as:

• Controlling the amount of cache usable by compartments, by means of invalidating part

of the cache for some compartments.

• Controlling the state of caches at each compartment switch, by at least forcing cache

flushes.

• Enabling the amount of unused cache to be used as shared memory, while retaining

control over consistency of this memory with the main memory (mapping/remapping

between compartments).

5.2.4. Static and dynamic resource allocation for
compartments

Resource allocation for compartment can be done either statically or dynamically. Below is a

brief discussion of these approaches.

Static allocation

It is done by configuration and never changes during system operation. The main advantage of

static allocation is that it can be checked prior to system operation, thus facilitating proof for

certification and evaluation.

 65

Dynamic allocation

Usually dynamic allocation is done either by the hypervisor, either by a special administrative

compartment having some specific privileges. Re-allocating resources for compartments is a

very interesting capability especially for embedded systems where resources are limited. But

the cost or resources needed to handle dynamicity must be taken into account. Furthermore, it

is much more difficult to provide the elements needed for certification and evaluation in a

dynamic context than in a static context.

5.3. Non-functional requirements
These requirements, although not linked to functional characteristics are needed for some

domains (aeronautics, automotive, transportation) where failure or malfunction has a very

measurable impact which must be taken in to account.

5.3.1. Fault tolerance
Fault tolerance is needed in DO-178 and SIL certifications. Since many systems in these

domains have also other strong requirements such as real-time operation, the impact of fault-

tolerance can be major on the overall architecture. Virtualization can help to alleviate this impact

by providing means of segregating parts of an application with respect to fault-tolerance.

Below is an example of the impact of how virtualization helps to introduce fault-tolerance in the

software architecture of a real-time system.

• The legacy system (see Fig. 40) has been designed without any fault-tolerance

requirements, having only real-time requirements for the critical application.

• The new design (see Fig. 41) is done with as little impact as possible on the

applications but with additional fault-tolerance requirements on the critical application.

 66

Fig. 39: Non fault-tolerant architecture

In Fig. 40 the application has no fault-tolerant requirements. Criticality is done versus real-time

only. So, the split has been made between real-time and non real-time components of the

application. Failure of the non real-time part of the application triggers failure of the real-time

part and reversively.

In the Fig. 41 below, virtualization has been introduced in order to cope with fault-tolerance

issues. The critical part has to continue operating, whatever the state of operation of the non-

critical part. The real-time requirements of the critical part must be kept valid.

 67

Fig. 40: Fault-tolerant architecture

The above case where the real-time part could be mapped to the critical part is not

generalizable. In most cases, there are real-time requirements in critical and non-critical parts.

So in the general case, requirements such as fault-tolerance must be taken into account as

early as possible in the design process to be able to make the suitable architectural choices,

including virtualization.

5.3.2. Security
Security is another strong requirement which was formally required for very specific devices and

systems (ATM, smart card readers) and which is now required in a greater number of cases due

to the interconnection of systems in the everyday life. For instance security is required for

content protection (digital media broadcasting) in set-top boxes, for network access and billing

in wireless communications (2G/3G/4G, ADSL), for enterprise-class VPNs …

The most used norms in security are CC (Common Criteria) and EAL (Evaluation Assurance

Level). The goods to protect are defined by a Security Target, and their protection must be

proved (formally or experimentally, depending on the Assurance Level) in any case, including

an accidental or caused malfunction of the system.

Independently from using trusted hardware, which has very strong impact for companies not

designing silicon, virtualization can help in security evaluation if the hardware-assisted

 68

virtualization capabilities are well documented and their behavior can be verified. Similarly, the

virtualization software has to be verifiable by external security experts in a blackbox, greybox or

whitebox approach, depending on the security level required.

5.3.3. Co-existence of full virtualization and para-virtualization
One of the main interests in virtualization is the capability to host several guest OS. In order to

support proprietary guest OS, full virtualization must be provided, whereas for non-proprietary

guest OS, para-virtualization provides better performance and control at the expense on

requiring adaptation of the guest OS for the hypervisor.

In cases where there is a need to group on the same hardware applications that were

developed to run on different hardware equipment, virtualization can help whenever the cost of

application migration from one OS to another is important. This cost usually does not involve

development and integration, but also validation and qualification.

The co-existence of full virtualization and para-virtualization capabilities is a need mainly for

embedded systems where hardware mutualization has a strong economic interest.

5.3.4. Performance
The impact of virtualization is a key factor for embedded systems whose resources are

inherently limited. It accounts significantly for the scarce penetration of virtualization in

embedded devices in comparison with server systems.

In order to minimize negative impact and to provide the best efficiency altogether for embedded

systems, virtualization has to address performance issue by providing the following capabilities:

• HW assisted virtualization: similarly to server systems, it removes the burdent of

executing in software most of the operations that can be executed in hardware when no

virtualization is executing.

• Graphics acceleration: mandatory for embedded systems where power-consumption is

a key criteria for any device in the system. Absent from server systems.

• DMA: similar to graphics acceleration. It exists in server systems where an IOMMU is

present. It requires IOMMU or IOMPU on the embedded system.

5.3.5. Other requirements
Aside from above requirements the features listed here may be of interest for some use cases

of virtualization, depending of the technology used:

• Autonomous creation and management of virtual machines: in cases where the

deployment of virtual machines is the result of an executable specification (as opposed

to be compiled in .e.g. static allocation), it is necessary for embedded systems that this

execution does not depend of an external entity such as an external console.

 69

• Health monitoring: health monitor capabilities are present in the virtualization

infrastructure if needed. The status of each compartment can be monitored locally or

remotely, and operation from a distant console can be carried out if needed.

• Security monitoring: similar to health monitoring, security checks such as integrity and

authentification can be carried out on a periodic basis, and from a distant console if

needed.

• Timekeeping: in a virtual machine, timekeeping can be carried out with the host system

or from an external time reference, with no side-effects for other virtual machines.

Synchronization, locking and resource preemption: in case of communication channels between

compartments, the virtualization infrastructure has to provide these capabilities and the means

of controlling them, regardless of the services provided in the compartments.

6. Conclusions
In this deliverable we have analyzed typical industrial applications target for the SoC platform

designed in the vIrtical Project with the objective of identifying opportunities to improve

efficiency, scalability and security of heterogeneous multicore embedded. For achieving this we

have analyzed acceleration, memory and virtualization opportunities.

Concerning acceleration opportunities three computational kernels (SIFT, SURF, FAST) from

the Computer Vision domain were identified by UNIBO, which are good candidates for

execution speed acceleration since they are at the heart of several vision applications. We first

evaluated existing implementations that either use SIMD hardware of software parallelization to

speed-up execution time. The potential for acceleration with these approaches is limited to a

factor of 2-4x. We then profiled these kernels to identify hot computational spots and devised a

fine-grained parallelization strategy of these program parts, meant to scale to the high number

of cores available in the GPPA. A proof-of-concept implementation for GPU hardware or GPPA

simulation targets has demonstrated the potential for significantly higher speedups.

Concerning sharing patterns to design more efficient coherence protocols, on average, about

60% of the blocks accessed by the analyzed applications correspond to data blocks, which,

unlike instruction blocks, may require coherence maintenance. Moreover, despite the fact that it

is detected a high sharing degree of data blocks among cores, indeed only SW blocks (just 40%

of the total number of data blocks) require coherence. Concerning data block accesses, SW

blocks agglutinate 60%, on average, of the total number of data accesses.

We have also analyzed memory compression opportunities in order to reduce the NoC energy

consumption. The main conclusion that we have drawn is that the most important stream of

data is made of all-zeros. This means that those streams should be the primary focus for

compression opportunities in the project.

Finally concerning virtualization opportunities, while not being exhaustive, since some domains

are not covered in this document (e.g. medical systems), the above defines a list of

 70

requirements applicable to virtualization in embedded systems. The allocation of these

requirements to hardware and software requirements largely depends upon the capabilities

provided by the hardware itself as well as the possibility of using hardware features in the

contexts where non-functional properties such as certification and security are required.

Therefore, we can conclude that industrial applications present good opportunities that enable

to design more efficient embedded heterogeneous mutlicore platforms if they are taken into

consideration.

7. Bibliography
[Cues11] Blas Cuesta, Alberto Ros, María E. Gómez, Antonio Robles, and José Duato.

Increasing the Effectiveness of Directory Caches by Deactivating Coherence for
Private Memory Blocks. In 38th Int’l Symp. on Computer Architecture (ISCA),
pages 93--104, June 2011.

[Har09] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive NUCA: Near-
optimal block placement and replication in distributed caches. In 36th Int’l Symp.
on Computer Architecture (ISCA), pages 184--195, June 2009.

[Kim10] D. Kim, J. Ahn, J. Kim, and J. Huh. Subspace snooping: Filtering snoops with
operating system suport. In 19th Int’l Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 111--122, Sept. 2010.

[Pug10] S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubramonian. SWEL:
Hardware cache coherence protocols to map shared data onto shared caches.
In 19th Int’l Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 465--476, Sept. 2010.

[Hos11] H. Hossain, S. Dwarkadas, and M. C. Huang. POPS: Coherence protocol
optimization for both private and shared data. In 20th Int’l Conference on Parallel
Architectures and Compilation Techniques (PACT), Oct. 2011.

[Sal04] David Salomon: Data Compression: the complete reference (3rd

[QDNwᶟ] QDevNet. Computer Vision (FastCV™). [Online]

 Edition, Springer
ISBN: 0-387-40697-2) 2004

https://developer.qualcomm.
com/mobile-development/mobile-technologies/computer-vision-fastcv.

[Cle11] J. Clemons, H. Zhu, S. Savarese, and T. Austin. Austin : MEVBench: A mobile
computer vision benchmarking suite. TX : IEEE International Symposium on
Workload Characterization (IISWC), 2011.

[Ros10] E. Rosten, R. Porter, and T. Drummond: FASTER and better: A machine
learning approach to corner detection. IEEE Trans. Pattern Analysis and
Machine Intelligence, Vol. 32, p. 105-119, 2010.

[Low04] C G. Lowe: Distinctive image features from scale-invariant keypoints. 2,
Internationa Journal on Computer Vision, Vol. 60, p. 91-110, 2004.

[Bay08] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool: Speeded-up robust features
(SURF). 3, Computer Vision Image Understanding, Vol. 110, p. 346-359, 2008.

[Cal10] M. Calonder, V. Lepetit, C. Strecha, and P. Fua.: BRIEF: binary robust
independent elementary. Berlin : Springer-Verlag. Proceedings of the 11th
European conference on Computer vision: Part IV, ECCV'10. p. 778-792, 2010.

[DBwᶟ] DragonBoard APQ8060 Mobile Development Board Website. [Online]
https://developer.qualcomm.com/develop/development-devices/dragonboard.

[OCVwᶟ] OpenCV website. [Online] http://opencv.willowgarage.com/.
[Stu11] J. Sturm, S. Magnenat, N. Engelhard, F. Pomerleau, F. Colas, W. Burgard, D.

Cremers, R. Siegwart: Towards a benchmark for rgb-d slam evaluation. Los
Angeles, USA : s.n. Proceedings of the RGB-D Workshop on Advanced
Reasoning with Depth Cameras at Robotics: Science and Systems Conf. (RSS),
2011.

https://developer.qualcomm.com/develop/development-devices/dragonboard�
http://opencv.willowgarage.com/�

 71

[Zha06] Yufang Zhang, Z. X. (s.d.). The Study of Parallel K-Means Algorithm.
Proceedings of the 6th World Congress on Intelligent Control and Automation,
June 21 - 23, 2006, Dalian, China.

[Le10] Deguang Le, J. C. (s.d.). Parallel AES Algorithm for Fast Data Encryption on
GPU. International Conference on Computer Engineering and Technology
(ICCET), 2010.

	Index
	Abstract
	Glossary (Please ensure that any acronyms used are clearly explained)
	Full Description of Deliverable content
	1. Introduction
	2. Analyzed Applications
	2.1. Applications for consumers
	2.1.1. Android

	2.2. Applications for telephony, data clustering and cryptography
	2.2.1. Asterisk
	2.2.2. KCluster
	2.2.3. OpenSSL

	2.3. Applications for Vision and Image Processing
	2.3.1. SIFT
	2.3.2. SURF
	2.3.3. FAST + BRIEF

	3. Acceleration opportunities
	3.1. Acceleration opportunities for telephony, data clustering and cryptography applications
	3.1.1. Asterisk
	3.1.2. KCluster
	3.1.3. OpenSSL

	3.2. Acceleration opportunities for Vision applications
	3.2.1. Architecture Specific Optimizations
	3.2.2. Coarse-Grained Thread-Level Parallelization
	3.2.3. Fine-Grained Data-Level Parallelization
	3.2.3.1. SIFT
	3.2.3.2. SURF
	3.2.3.3. FAST

	4. Memory system opportunities
	4.1. Analysis Methodology
	4.1.1. Target System
	4.1.2. Simulation Tools
	4.1.3. Trace Acquisition Methodology
	4.1.4. Applications

	4.2. Sharing patterns analysis
	4.2.1. Analysis Results
	4.2.1.1. Conclusions for sharing patterns analysis

	4.3. Compression Opportunities
	4.3.1. Analysis Results
	4.3.1.1. Aligned consecutively repeated patterns (ACRP)
	4.3.1.2. Non-aligned consecutively repeated patterns (nACRP)
	4.3.1.3. Non-aligned non-consecutively repeated patterns (nAnCRP)
	4.3.1.4. General Analysis of Compression Opportunities for applications
	4.3.1.5. Conclusions for compression opportunities

	5. Virtualization Requirements
	5.1. Domain requirements
	5.1.1. Telecommunications
	5.1.2. Consumer Electronics
	5.1.3. Automotive and Vetronics
	5.1.4. Transportation
	5.1.5. Avionics

	5.2. Technical requirements
	5.2.1. Isolation between compartments
	5.2.1.1. Temporal isolation
	5.2.1.2. Spatial isolation

	5.2.2. Communications between compartments
	5.2.3. Resource sharing and reservation among compartments
	5.2.3.1. CPU

	5.2.4. Static and dynamic resource allocation for compartments

	5.3. Non-functional requirements
	5.3.1. Fault tolerance
	5.3.2. Security
	5.3.3. Co-existence of full virtualization and para-virtualization
	5.3.4. Performance
	5.3.5. Other requirements

	6. Conclusions
	7. Bibliography

